156 research outputs found

    The Herschel Virgo Cluster Survey: VII. Dust in cluster dwarf elliptical galaxies

    Get PDF
    We use the Science Demonstration Phase data of the Herschel Virgo Cluster Survey to search for dust emission of early-type dwarf galaxies in the central regions of the Virgo Cluster as an alternative way of identifying the interstellar medium.We present the first possible far-infrared detection of cluster early-type dwarf galaxies: VCC781 and VCC951 are detected at the 10 sigma level in the SPIRE 250 micron image. Both detected galaxies have dust masses of the order of 10^5 Msun and average dust temperatures ~20K. The detection rate (less than 1%) is quite high compared to the 1.7% detection rate for Hi emission, considering that dwarfs in the central regions are more Hi deficient. We conclude that the removal of interstellar dust from dwarf galaxies resulting from ram pressure stripping, harassment, or tidal effects must be as efficient as the removal of interstellar gas.Comment: Letter accepted for publication in A&A (Herschel special issue

    A “Soft” Approach to Analysing Mobile Financial Services Sociotechnical Systems

    Get PDF
    Advances in mobile computing have presented a huge opportunity to provide Mobile Financial Services (MFS) to half of the world’s population who currently do not have access to financial services. However, cybersecurity concerns in the mobile computing ecosystem have slowed down the adoption of MFS. The adoption of MFS is further hampered by the lack of a clear understanding of the interaction between the complex infrastructures and human factors that exist in the ecosystem for Mobile Financial Services Socio-Technical Systems (MFSSTS). This paper presents the work in progress of investigating the problem of MFSSTS. It discusses the preliminary results and understanding obtained from using Human Factor approaches to build and analyse the model for MFSSTS

    Characterizing, modelling and understanding the climate variability of the deep water formation in the North-Western Mediterranean Sea

    Get PDF
    Observing, modelling and understanding the climate-scale variability of the deep water formation (DWF) in the North-Western Mediterranean Sea remains today very challenging. In this study, we first characterize the interannual variability of this phenomenon by a thorough reanalysis of observations in order to establish reference time series. These quantitative indicators include 31 observed years for the yearly maximum mixed layer depth over the period 1980–2013 and a detailed multi-indicator description of the period 2007–2013. Then a 1980–2013 hindcast simulation is performed with a fully-coupled regional climate system model including the high-resolution representation of the regional atmosphere, ocean, land-surface and rivers. The simulation reproduces quantitatively well the mean behaviour and the large interannual variability of the DWF phenomenon. The model shows convection deeper than 1000 m in 2/3 of the modelled winters, a mean DWF rate equal to 0.35 Sv with maximum values of 1.7 (resp. 1.6) Sv in 2013 (resp. 2005). Using the model results, the winter-integrated buoyancy loss over the Gulf of Lions is identified as the primary driving factor of the DWF interannual variability and explains, alone, around 50 % of its variance. It is itself explained by the occurrence of few stormy days during winter. At daily scale, the Atlantic ridge weather regime is identified as favourable to strong buoyancy losses and therefore DWF, whereas the positive phase of the North Atlantic oscillation is unfavourable. The driving role of the vertical stratification in autumn, a measure of the water column inhibition to mixing, has also been analyzed. Combining both driving factors allows to explain more than 70 % of the interannual variance of the phenomenon and in particular the occurrence of the five strongest convective years of the model (1981, 1999, 2005, 2009, 2013). The model simulates qualitatively well the trends in the deep waters (warming, saltening, increase in the dense water volume, increase in the bottom water density) despite an underestimation of the salinity and density trends. These deep trends come from a heat and salt accumulation during the 1980s and the 1990s in the surface and intermediate layers of the Gulf of Lions before being transferred stepwise towards the deep layers when very convective years occur in 1999 and later. The salinity increase in the near Atlantic Ocean surface layers seems to be the external forcing that finally leads to these deep trends. In the future, our results may allow to better understand the behaviour of the DWF phenomenon in Mediterranean Sea simulations in hindcast, forecast, reanalysis or future climate change scenario modes. The robustness of the obtained results must be however confirmed in multi-model studies

    Co‐designing the Cabriotraining : a training for transdisciplinary teams

    Get PDF
    Accessible summary The research was conducted by a team of researchers. Some of the researchers have experience of living with a disability. The researchers created training for other research teams that include experts by experience. The training has six parts. To decide what happened in the training, the researchers read articles and asked the research teams they trained about what problems they had and what they wanted to know about. The article tells why and how the training was made. It also says what training is needed for researchers with and without disabilities to learn and work together in a way that feels safe and useful. In developing and providing the training, it was very crucial to search for a safe and welcome space for all people involved (Figure 8). As we don't know what is "safe" for the other, this means we have to search together, in respect and with enough time to get to know each other. Background Researchers collected questions and needs for training from 10 inclusive research projects in the Netherlands. Based on literature research and the information collected, six training modules were developed. Researchers sought to learn how to develop and provide training and coaching to inclusive teams on organising collaboration in the different stages of their research projects. Method An iterative training development process to support inclusive research projects was initiated by a research duo backed by a transdisciplinary team including researchers, trainers and designers. Some members of the team have experiential knowledge based on living with a disability. Results Literature research resulted in four guiding theories, including Universal Design for Learning, Derrida's concept of Hospitality, post-materialist theory looking at agency as an assemblage, and Romiszowski's model situated within Instructional Design theory. Insights gained during development of the training modules are documented with text, figures and vignettes. A core finding was the need to add "Level Zero" to Romiszowski's model: a collective term created for all the interacting issues trainers had to consider because of research group diversity. Conclusions Hospitality formed the heart of "Level Zero." Creating a failure-free space for learning is an important pre-condition for the development and organisation of training. Training can inspire exploration and reflection on collaboration and can illuminate how to conduct research within transdisciplinary teams. Essential practices included working with nonverbal research methods, as these are (more) fit for purpose when including the knowledge of experts by experience and incorporating practice- and stakeholder-based knowledge

    Simulated reduction in upwelling of tropical oxygen minimum waters in a warmer climate

    Get PDF
    Waters of the Atlantic and Pacific tropical oxygen minimum zones (OMZs), located in the poorly ventilated shadow zones of their respective ocean basins, reach the sea surface mostly in the eastern boundary and equatorial upwelling regions, thereby providing nutrients sustaining elevated biological productivity. Associated export of sinking organic matter leads to oxygen consumption at depth, and thereby helps to maintain the tropical OMZs. Biogeochemical feedback processes between nutrient-rich OMZ waters and biological production in the upwelling regions and their net impact on the evolution of the OMZs depend on the strengths of the flow pathways connecting OMZs and the upper ocean, because even though water has to be isolated below the mixed layer for some time in order for OMZs to develop, it has to be brought up to the surface mixed layer eventually in order to exchange properties with the atmosphere. Here, we investigate the connections between OMZs and the surface mixed layer, and their sensitivity to global warming with a coupled ocean–atmosphere general circulation model by analyzing the fate of simulated floats released in the OMZs. We find that under present-day climate conditions, on decadal time scales a much larger portion of the model's OMZ waters reaches the surface ocean in the Pacific than in the Atlantic Ocean: within 20 years, 75% in the Pacific and 38% in the Atlantic. When atmospheric CO2 is doubled, the fraction of modeled OMZ waters reaching the upwelling in the same time decreases by about 25% in both oceans. As a consequence, feedback between biogeochemical processes in OMZs and in the surface ocean is likely to be weakened in the future
    • 

    corecore