135 research outputs found

    Diffuse Galactic Gamma Rays from Shock-Accelerated Cosmic Rays

    Full text link
    A shock-accelerated particle flux \propto p^-s, where p is the particle momentum, follows from simple theoretical considerations of cosmic-ray acceleration at nonrelativistic shocks followed by rigidity-dependent escape into the Galactic halo. A flux of shock-accelerated cosmic-ray protons with s ~ 2.8 provides an adequate fit to the Fermi-LAT gamma-ray emission spectra of high-latitude and molecular cloud gas when uncertainties in nuclear production models are considered. A break in the spectrum of cosmic-ray protons claimed by Neronov, Semikoz, & Taylor (PRL, 108, 051105, 2012) when fitting the gamma-ray spectra of high-latitude molecular clouds is a consequence of using a cosmic-ray proton flux described by a power law in kinetic energy.Comment: Version to correspond to published letter in PRL; corrected Fig.

    Particle Diffusion and Acceleration by Shock Wave in Magnetized Filamentary Turbulence

    Full text link
    We expand the off-resonant scattering theory for particle diffusion in magnetized current filaments that can be typically compared to astrophysical jets, including active galactic nucleus jets. In a high plasma beta region where the directional bulk flow is a free-energy source for establishing turbulent magnetic fields via current filamentation instabilities, a novel version of quasi-linear theory to describe the diffusion of test particles is proposed. The theory relies on the proviso that the injected energetic particles are not trapped in the small-scale structure of magnetic fields wrapping around and permeating a filament but deflected by the filaments, to open a new regime of the energy hierarchy mediated by a transition compared to the particle injection. The diffusion coefficient derived from a quasi-linear type equation is applied to estimating the timescale for the stochastic acceleration of particles by the shock wave propagating through the jet. The generic scalings of the achievable highest energy of an accelerated ion and electron, as well as of the characteristic time for conceivable energy restrictions, are systematically presented. We also discuss a feasible method of verifying the theoretical predictions. The strong, anisotropic turbulence reflecting cosmic filaments might be the key to the problem of the acceleration mechanism of the highest energy cosmic rays exceeding 100 EeV (10^{20} eV), detected in recent air shower experiments.Comment: 39 pages, 2 figures, accepted for publication in Ap

    Index

    Get PDF
    The interest in relativistic beam-plasma instabilities has been greatly rejuvenated over the past two decades by novel concepts in laboratory and space plasmas. Recent advances in this long-standing field are here reviewed from both theoretical and numerical points of view. The primary focus is on the two-dimensional spectrum of unstable electromagnetic waves growing within relativistic, unmagnetized, and uniform electron beam-plasma systems. Although the goal is to provide a unified picture of all instability classes at play, emphasis is put on the potentially dominant waves propagating obliquely to the beam direction, which have received little attention over the years. First, the basic derivation of the general dielectric function of a kinetic relativistic plasma is recalled. Next, an overview of two-dimensional unstable spectra associated with various beam-plasma distribution functions is given. Both cold-fluid and kinetic linear theory results are reported, the latter being based on waterbag and Maxwell–Jüttner model distributions. The main properties of the competing modes (developing parallel, transverse, and oblique to the beam) are given, and their respective region of dominance in the system parameter space is explained. Later sections address particle-in-cell numerical simulations and the nonlinear evolution of multidimensional beam-plasma systems. The elementary structures generated by the various instability classes are first discussed in the case of reduced-geometry systems. Validation of linear theory is then illustrated in detail for large-scale systems, as is the multistaged character of the nonlinear phase. Finally, a collection of closely related beam-plasma problems involving additional physical effects is presented, and worthwhile directions of future research are outlined.Original Publication: Antoine Bret, Laurent Gremillet and Mark Eric Dieckmann, Multidimensional electron beam-plasma instabilities in the relativistic regime, 2010, Physics of Plasmas, (17), 12, 120501-1-120501-36. http://dx.doi.org/10.1063/1.3514586 Copyright: American Institute of Physics http://www.aip.org/</p

    On The Origin of Very High Energy Cosmic Rays

    Full text link
    We discuss the most recent developments in our understanding of the acceleration and propagation of cosmic rays up to the highest energies. In particular we specialize our discussion to three issues: 1) developments in the theory of particle acceleration at shock waves; 2) the transition from galactic to extragalactic cosmic rays; 3) implications of up-to-date observations for the origin of ultra high energy cosmic rays (UHECRs).Comment: Invited Review Article to appear in Modern Physics Letters A, Review Sectio

    The origin of ultra high energy cosmic rays

    Get PDF
    We briefly discuss some open problems and recent developments in the investigation of the origin and propagation of ultra high energy cosmic rays (UHECRs).Comment: Invited Review Talk at TAUP 2005 (Zaragoza - September 10-14, 2005). 7 page

    High Energy Cosmic Rays From Supernovae

    Get PDF
    Cosmic rays are charged relativistic particles that reach the Earth with extremely high energies, providing striking evidence of the existence of effective accelerators in the Universe. Below an energy around 1017\sim 10^{17} eV cosmic rays are believed to be produced in the Milky Way while above that energy their origin is probably extragalactic. In the early '30s supernovae were already identified as possible sources for the Galactic component of cosmic rays. After the '70s this idea has gained more and more credibility thanks to the the development of the diffusive shock acceleration theory, which provides a robust theoretical framework for particle energization in astrophysical environments. Afterwards, mostly in recent years, much observational evidence has been gathered in support of this framework, converting a speculative idea in a real paradigm. In this Chapter the basic pillars of this paradigm will be illustrated. This includes the acceleration mechanism, the non linear effects produced by accelerated particles onto the shock dynamics needed to reach the highest energies, the escape process from the sources and the transportation of cosmic rays through the Galaxy. The theoretical picture will be corroborated by discussing several observations which support the idea that supernova remnants are effective cosmic ray factories.Comment: Final draft of a chapter in "Handbook of Supernovae" edited by Athem W. Alsabti and Paul Murdi

    Cosmic-ray-induced ionization in molecular clouds adjacent to supernova remnants - Tracing the hadronic origin of GeV gamma radiation

    Get PDF
    Energetic gamma rays (GeV to TeV photon energy) have been detected toward several supernova remnants (SNR) associated with molecular clouds. If the gamma rays are produced mainly by hadronic processes rather than leptonic processes like bremsstrahlung, then the flux of energetic cosmic ray (CR) nuclei (>1 GeV) required to produce the gamma rays can be inferred at the site where the particles are accelerated in SNR shocks. It is of great interest to understand the acceleration of the CR of lower energy (<1 GeV) accompanying the energetic component. These particles of lower energy are most effective in ionizing interstellar gas, leaving an observable imprint on the interstellar ion chemistry. A correlation of energetic gamma radiation with enhanced interstellar ionization can thus support the hadronic origin of the gamma rays and constrain the acceleration of ionizing CR in SNR. We propose a method to test the hadronic origin of GeV gamma rays from SNR associated with a molecular cloud. We use observational gamma ray data for each of these SNR known, modeling the observations to obtain the underlying proton spectrum assuming that the gamma rays are produced by pion decay. Assuming that the acceleration mechanism does not only produce high energy protons, but also low energy protons, this proton spectrum at the source is then used to calculate the ionization rate of the molecular cloud. Ionized molecular hydrogen triggers a chemical network forming molecular ions. The relaxation of these ions results in characteristic line emission, which can be predicted. We show that the ionization rate for at least two objects is more than an order of magnitude above Galactic average for molecular clouds, hinting at an enhanced formation rate of molecular ions. There will be interesting opportunities to measure crucial molecular ions in the infrared and submillimeter-wave parts of the spectrum.Comment: published in Astronomy and Astrophysics, 13 pages, 19 figure

    Cosmic-ray acceleration in supernova remnants: non-linear theory revised

    Full text link
    A rapidly growing amount of evidences, mostly coming from the recent gamma-ray observations of Galactic supernova remnants (SNRs), is seriously challenging our understanding of how particles are accelerated at fast shocks. The cosmic-ray (CR) spectra required to account for the observed phenomenology are in fact as steep as E2.2E2.4E^{-2.2}--E^{-2.4}, i.e., steeper than the test-particle prediction of first-order Fermi acceleration, and significantly steeper than what expected in a more refined non-linear theory of diffusive shock acceleration. By accounting for the dynamical back-reaction of the non-thermal particles, such a theory in fact predicts that the more efficient the particle acceleration, the flatter the CR spectrum. In this work we put forward a self-consistent scenario in which the account for the magnetic field amplification induced by CR streaming produces the conditions for reversing such a trend, allowing --- at the same time --- for rather steep spectra and CR acceleration efficiencies (about 20%) consistent with the hypothesis that SNRs are the sources of Galactic CRs. In particular, we quantitatively work out the details of instantaneous and cumulative CR spectra during the evolution of a typical SNR, also stressing the implications of the observed levels of magnetization on both the expected maximum energy and the predicted CR acceleration efficiency. The latter naturally turns out to saturate around 10-30%, almost independently of the fraction of particles injected into the acceleration process as long as this fraction is larger than about 10410^{-4}.Comment: 24 pages, 5 figures, accepted for publication in JCA

    Radio observations of ZwCl 2341.1+0000: a double radio relic cluster

    Full text link
    Context: Hierarchal models of large scale structure (LSS) formation predict that galaxy clusters grow via gravitational infall and mergers of (smaller) mass concentrations, such as clusters and galaxy groups. Diffuse radio emission, in the form of radio halos and relics, is found in clusters undergoing a merger, indicating that shocks or turbulence associated with the merger are capable of accelerating electrons to highly relativistic energies. Here we report on radio observations of ZwCl 2341.1+0000, a complex merging structure of galaxies located at z=0.27, using Giant Metrewave Radio Telescope (GMRT) observations. Aims: The main aim of the observations is to study the nature of the diffuse radio emission in the galaxy cluster ZwCl 2341.1+0000. Methods: We have carried out GMRT 610, 241, and 157 MHz continuum observations of ZwCl 2341.1+0000. The radio observations are combined with X-ray and optical data of the cluster. Results: The GMRT observations show the presence of a double peripheral radio relic in the cluster ZwCl 2341.1+0000. The spectral index is -0.49 \pm 0.18 for the northern relic and -0.76 \pm 0.17 for the southern relic respectively. We have derived values of 0.48-0.93 microGauss for the equipartition magnetic field strength. The relics are probably associated with an outwards traveling merger shock waves.Comment: 14 pages, 10 figures, accepted for publication in A&A on July 30, 200

    The Fermi Bubble as a Source of Cosmic Rays in the Energy Range > 10E15 eV

    Get PDF
    The {\it Fermi} Large Area Telescope has recently discovered two giant gamma-ray bubbles which extend north and south of the Galactic center with diameters and heights of the order of H10H\sim 10 kpc. We suggest that the periodic star capture processes by the Galactic supermassive black hole Sgr A^*, with a capture rate of τcap13×105\tau_{\rm cap}^{-1}\sim 3\times 10^{-5} yr1^{-1} and an energy release of W3×1052W\sim 3\times 10^{52} erg per capture, can result in hot plasma injecting into the Galactic halo at a wind velocity of u108u\sim 10^8 cm s1^{-1}. The periodic injection of hot plasma can produce a series of shocks. Energetic protons in the bubble are re-accelerated when they interact with these shocks. We show that for energy larger than E>1015E> 10^{15} eV, the acceleration process can be better described by the stochastic second-order Fermi acceleration. We propose that hadronic cosmic rays (CRs) within the ``knee'' of the observed CR spectrum are produced by Galactic supernova remnants distributed in the Galactic disk. Re-acceleration of these particles in the Fermi Bubble produces CRs beyond the knee. With a mean CR diffusion coefficient in this energy range in the bubble DB3×1030D_B\sim 3\times 10^{30} cm2^2 s1^{-1}, we can reproduce the spectral index of the spectrum beyond the knee and within. The conversion efficiency from shock energy of the bubble into CR energy is about 10\%. This model provides a natural explanation of the observed CR flux, spectral indices, and matching of spectra at the knee.Comment: 43 pages, 8 figues, to be published in the Astrophysical Journal; version 2, 45 pages, 8 figures, added references and corrected typo
    corecore