75 research outputs found

    Hybrid MHD/PIC simulation of a metallic gas-puff z pinch implosion

    Full text link
    We present the hybrid MHD/PIC simulations of the time evolution of a bismuth metallic gas-puff z pinch in external axial magnetic field (AMF). Recent experiments with IMRI-5 generator (450 kA, 450 ns) [1] show the certain effect of an axial magnetic field on radiation energy produced during z pinch implosion. In order to perform the numerical simulation of gas puff z pinch a hybrid model was developed. The hybrid model treats the electrons as a massless fluid and ions as macroparticles. The macroparticle dynamic is calculated with the use of PIC method. Ion-ion Coulomb collision is considered with the use of MC method. The radiation transfer of bismuth plasma was accounted in the framework of P1 method. The interelectrode gap pumping by plasma of 8 μs 80 kA bismuth arc with the following plasma implosion by 450 kA / 450 ns current pulse in different external AMF was modelled. The obtained results are in a reasonable agreement with the experimental results. © Published under licence by IOP Publishing Ltd.The work was supported by Russian Science Foundation (project No. 16-19-10142)

    The Effects of Preheating of a Fine Tungsten Wire and the Polarity of a High-Voltage Electrode on the Energy Characteristics of an Electrically Exploded Wire in Vacuum

    Get PDF
    Results obtained from experimental and numerical studies of tungsten wires electrical explosion in vacuum are presented. The experiments were performed both with and without preheating of the wires, using positive or negative polarity of a high-voltage electrode. Preheating is shown to increase energy deposition in the wire core due to a longer resistive heating stage. The effect was observed both in single wire and wire array experiments. The evolution of the phase state of the wire material during explosion was examined by means of one-dimensional numerical simulation using a semiempirical wide-range equation of state describing the properties of tungsten with allowance made for melting and vaporization.Comment: 9 pages, 9 Postscript figure

    On Hybrid Type of Cathode Attachment in High Current Vacuum Arcs

    Full text link
    This paper discusses the issues of a possible change of the type of cathode attachment of high-current vacuum arcs (HCVA) with an average cathode current density of more than 105 A/cm2. This type of HCVA is used as pumping plasma gun in experiments with plasma puff z-pinches. These experiments showed that the measured linear mass of the HCVA plasma jet is much higher (by a factor of 10 or more) than the expected mass, which can be obtained from the assumption that cathode attachment occurs only through a multitude of cathode spots emitting supersonic plasma jets. It is shown that in HCVA of the type under consideration, at some time instant there are two types of cathode attachments - cathode spots and thermionic erosion attachment (TEA). It can be said that HCVA of this type have a hybrid cathodic attachment. Unlike cathode spots, TEA produces a subsonic plasma flow, which contributes to an increase in the linear mass of the HCVA plasma jet. © 2021 Institute of Physics Publishing. All rights reserved

    Investigating the quality of modeled aerosol profiles based on combined lidar and sunphotometer data

    Get PDF
    In this study we present an evaluation of the Comprehensive Air Quality Model with extensions (CAMx) for Thessaloniki using radiometric and lidar data. The aerosol mass concentration profiles of CAMx are compared against the PM2.5 and PM2. 5−10 concentration profiles retrieved by the Lidar-Radiometer Inversion Code (LIRIC). The CAMx model and the LIRIC algorithm results were compared in terms of mean mass concentration profiles, center of mass and integrated mass concentration in the boundary layer and the free troposphere. The mean mass concentration comparison resulted in profiles within the same order of magnitude and similar vertical structure for the PM2. 5 particles. The mean centers of mass values are also close, with a mean bias of 0.57 km. On the opposite side, there are larger differences for the PM2. 5−10 mode, both in the boundary layer and in the free troposphere. In order to grasp the reasons behind the discrepancies, we investigate the effect of aerosol sources that are not properly included in the model's emission inventory and in the boundary conditions such as the wildfires and the desert dust component. The identification of the cases that are affected by wildfires is performed using wind backward trajectories from the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model in conjunction with satellite fire pixel data from MODerate-resolution Imaging Spectroradiometer (MODIS) Terra and Aqua global monthly fire location product MCD14ML. By removing those cases the correlation coefficient improves from 0.69 to 0.87 for the PM2. 5 integrated mass in the boundary layer and from 0.72 to 0.89 in the free troposphere. The PM2.5 center of mass fractional bias also decreases to 0.38 km. Concerning the analysis of the desert dust component, the simulations from the Dust Regional Atmospheric Model (BSC-DREAM8b) were deployed. When only the Saharan dust cases are taken into account, BSC-DREAM8b generally outperforms CAMx when compared with LIRIC, achieving a correlation of 0.91 and a mean bias of −29.1 % for the integrated mass in the free troposphere and a correlation of 0.57 for the center of mass. CAMx, on the other hand, underestimates the integrated mass in the free troposphere. Consequently, the accuracy of CAMx is limited concerning the transported Saharan dust cases. We conclude that the performance of CAMx appears to be best for the PM2.5 particles, both in the boundary layer and in the free troposphere. Sources of particles not properly taken into account by the model are confirmed to negatively affect its performance, especially for the PM2. 5−10 particles.The authors would like to acknowledge the EU projects MACC-III (Monitoring Atmospheric Composition and Climate – III, grant agreement no. 633080) and MACC-II project (Monitoring Atmospheric Composition and Climate – Interim Implementation, grant agreement no. 283576). The simulated results presented in this research paper have been produced using the EGI and HellasGrid infrastructures. The ACTRIS-2 project from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 654109 is gratefully acknowledged. The authors would also like to acknowledge the support provided by the Scientific Computing Center at Aristotle University of Thessaloniki throughout the progress of the work on air quality forecasting. BSC-DREAM8b simulations were performed on the Mare Nostrum supercomputer hosted by Barcelona Supercomputing Center-Centro Nacional de Supercomputacion (BSC-CNS). S. Basart wants to acknowledge the CICYT project (CGL2013-46736). Elina Giannakaki acknowledges the support of the Academy of Finland (project no. 270108).Peer ReviewedPostprint (published version

    Numerical simulation of electrical explosions in megagauss magnetic fields

    Get PDF
    The paper reports on a magnetohydrodynamic simulation of electrical explosions of conductors in megagauss magnetic fields. It is shown that in a plane geometry, the time of plasma formation at the surface of a metal conductor does not depend on the rate of rise of the magnetic field and is determined by the properties of the metal; the absolute values of the magnetic field at which plasma is formed are 5±0.25 MGs for copper, 4.25±0.2 MGs for tungsten, 3.85±0.15 MGs for aluminum, and 3.6±0.25 MGs for titanium. In cylindrical geometry, the time of plasma formation does depend on the rate of field rise

    Formation of double shell during implosion of plasma metal puff Z-pinches

    Full text link
    This work presents the results of experimental and theoretical research of impact of tailored density profile and application of external axial magnetic field on initial spatial distribution of the plasma density in the plasma metal puff Z-pinch and on its implosion dynamics. It has been discovered that upon implosion of the plasma metal puff Z-pinch some stripes interpreted as the system of two coaxial shells appear on the optical images. With the help of numerical simulation, the formation of the plasma liner consisting of a mixture of carbon and bismuth ions and formed by the expansion of the plasma jet of the arc burning on the bismuth electrode has been considered in this work. It has been shown that the lightweight carbon ions facilitate formation of the density distribution smoothly decreasing with the increase in radius, that, in turn, leads to suppression of the Rayleigh-Taylor instability in the current sheath upon further implosion. It has also been demonstrated that availability of the two types of ions in plasma considerably different in mass leads to formation (in the compression phase) of a double shell with externally located heavy ions. It has also been revealed that the application of the external axial magnetic field leads to reduction in the plasma metal puff Z-pinch initial diameter. © 2020 Author(s).This work was funded by Russian Science Foundation. Project No. 19–19-00127

    Anomalous diffusion as a signature of collapsing phase in two dimensional self-gravitating systems

    Full text link
    A two dimensional self-gravitating Hamiltonian model made by NN fully-coupled classical particles exhibits a transition from a collapsing phase (CP) at low energy to a homogeneous phase (HP) at high energy. From a dynamical point of view, the two phases are characterized by two distinct single-particle motions : namely, superdiffusive in the CP and ballistic in the HP. Anomalous diffusion is observed up to a time τ\tau that increases linearly with NN. Therefore, the finite particle number acts like a white noise source for the system, inhibiting anomalous transport at longer times.Comment: 10 pages, Revtex - 3 Figs - Submitted to Physical Review

    The Initial Stage of Neck Formation in an Х-Pinch

    Get PDF
    A model is proposed to describe the initial stage of neck formation in an X-pinch that proceeds in three stages: the electrical explosion of metal wires that generates the X-pinch; the expansion of the wire material that occurs due to an excess of the gas-kinetic pressure over the pressure of the magnetic field. The model allows one to predict the minimum rate of current rise at which the formation of a "hot spot" in an X-pinch is possible. The minimum current rise rate is determined by the thermodynamic parameters of the wires at a critical point; it is of the order of 1 kA/ns

    Four-dimensional distribution of the 2010 Eyjafjallajökull volcanic cloud over Europe observed by EARLINET

    Get PDF
    © Author(s) 2013. This work is distributed under the Creative Commons Attribution 3.0 License.The eruption of the Icelandic volcano Eyjafjallaj ökull in April-May 2010 represents a "natural experiment" to study the impact of volcanic emissions on a continental scale. For the first time, quantitative data about the presence, altitude, and layering of the volcanic cloud, in conjunction with optical information, are available for most parts of Europe derived from the observations by the European Aerosol Research Lidar NETwork (EARLINET). Based on multi-wavelength Raman lidar systems, EARLINET is the only instrument worldwide that is able to provide dense time series of high-quality optical data to be used for aerosol typing and for the retrieval of particle microphysical properties as a function of altitude. In this work we show the four-dimensional (4-D) distribution of the Eyjafjallajökull volcanic cloud in the troposphere over Europe as observed by EARLINET during the entire volcanic event (15 April-26 May 2010). All optical properties directly measured (backscatter, extinction, and particle linear depolarization ratio) are stored in the EARLINET database available at www.earlinet.org. A specific relational database providing the volcanic mask over Europe, realized ad hoc for this specific event, has been developed and is available on request at www.earlinet.org. During the first days after the eruption, volcanic particles were detected over Central Europe within a wide range of altitudes, from the upper troposphere down to the local planetary boundary layer (PBL). After 19 April 2010, volcanic particles were detected over southern and south-eastern Europe. During the first half of May (5-15 May), material emitted by the Eyjafjallajökull volcano was detected over Spain and Portugal and then over the Mediterranean and the Balkans. The last observations of the event were recorded until 25 May in Central Europe and in the Eastern Mediterranean area. The 4-D distribution of volcanic aerosol layering and optical properties on European scale reported here provides an unprecedented data set for evaluating satellite data and aerosol dispersion models for this kind of volcanic events.Peer reviewe
    corecore