4 research outputs found

    A review of conventional and emerging technologies for hydrogels sterilization

    Get PDF
    Funding This work was financially supported by Fundaçao ˜ para a Ciˆencia e Tecnologia (FCT), Portugal, through the project STERILAEROGEL – Green method to prepare sterilised biopolymer-based aerogel (POCI01–0145-FEDER-032625) and Strategic Projects FCT-MEC PEst-C/EQB/ UI0102/2019, UIDB/00102/2020 and Programmatic Project UIDP/ 00102/2020 of the CIEPQPF, and UI/05704/2020 of the ciTechCare. C. S. A. Bento acknowledges for PhD grant UI/BD/151008/2021 and M. C. Gaspar acknowledges FCT for the financial support under Scientific Employment Stimulus – Individual and Institutional Calls (CEECIND/ 00527/2017 and CEECINST/00060/2021).Hydrogels are extensively used in the biomedical field, as drug delivery systems, wound dressings, contact lenses or as scaffolds for tissue engineering. Due to their polymeric nature and the presence of high amounts of water in their structure, hydrogels generally present high sensitivity to terminal sterilization. The establishment of an efficient sterilization protocol that does not compromise the functional properties of the hydrogels is one of the challenges faced by researchers when developing a hydrogel for a specific application. Yet, until very recently this aspect was largely ignored in the literature. The present paper reviews the state of literature concerning hydrogels sterilization, compiling the main findings. Conventional terminal sterilization methods (heat sterilization, radiation sterilization, and gas sterilization) as well as emerging sterilization techniques (ozone, supercritical carbon dioxide) are covered. Considerations about aseptic processing are also included. Additionally, and as a framework, hydrogels’ polymeric materials, types of networks, and main biomedical applications are summarily described.info:eu-repo/semantics/publishedVersio

    The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases

    No full text
    n/

    Characterisation of microbial attack on archaeological bone

    Get PDF
    As part of an EU funded project to investigate the factors influencing bone preservation in the archaeological record, more than 250 bones from 41 archaeological sites in five countries spanning four climatic regions were studied for diagenetic alteration. Sites were selected to cover a range of environmental conditions and archaeological contexts. Microscopic and physical (mercury intrusion porosimetry) analyses of these bones revealed that the majority (68%) had suffered microbial attack. Furthermore, significant differences were found between animal and human bone in both the state of preservation and the type of microbial attack present. These differences in preservation might result from differences in early taphonomy of the bones. © 2003 Elsevier Science Ltd. All rights reserved
    corecore