63 research outputs found

    Upregulation of the cell-cycle regulator RGC-32 in Epstein-Barr virus-immortalized cells

    Get PDF
    Epstein-Barr virus (EBV) is implicated in the pathogenesis of multiple human tumours of lymphoid and epithelial origin. The virus infects and immortalizes B cells establishing a persistent latent infection characterized by varying patterns of EBV latent gene expression (latency 0, I, II and III). The CDK1 activator, Response Gene to Complement-32 (RGC-32, C13ORF15), is overexpressed in colon, breast and ovarian cancer tissues and we have detected selective high-level RGC-32 protein expression in EBV-immortalized latency III cells. Significantly, we show that overexpression of RGC-32 in B cells is sufficient to disrupt G2 cell-cycle arrest consistent with activation of CDK1, implicating RGC-32 in the EBV transformation process. Surprisingly, RGC-32 mRNA is expressed at high levels in latency I Burkitt's lymphoma (BL) cells and in some EBV-negative BL cell-lines, although RGC-32 protein expression is not detectable. We show that RGC-32 mRNA expression is elevated in latency I cells due to transcriptional activation by high levels of the differentially expressed RUNX1c transcription factor. We found that proteosomal degradation or blocked cytoplasmic export of the RGC-32 message were not responsible for the lack of RGC-32 protein expression in latency I cells. Significantly, analysis of the ribosomal association of the RGC-32 mRNA in latency I and latency III cells revealed that RGC-32 transcripts were associated with multiple ribosomes in both cell-types implicating post-initiation translational repression mechanisms in the block to RGC-32 protein production in latency I cells. In summary, our results are the first to demonstrate RGC-32 protein upregulation in cells transformed by a human tumour virus and to identify post-initiation translational mechanisms as an expression control point for this key cell-cycle regulator

    Structure of Kα1,2 - And Kβ1,3 -emission x-ray spectra for Se, Y, and Zr

    Get PDF
    UID/FIS/04559/2020 UID/MULTI/04046/2020 Project No. PTDC/FIS-AQM/31969/20 Grant No. 2017/25/B/ST2/00901The Kα and Kβ x-ray spectra of Se, Y, and Zr were studied experimentally and theoretically in order to obtain information on the Kα1 line asymmetry and the spin doublet in Kβ1,3 diagram lines. Using a high-resolution antiparallel double-crystal x-ray spectrometer, we obtained the line shapes, that is, asymmetry index and natural linewidths. We found that the corrected full width at half maximum of the Kα1 and Kα2 lines as a function of Z is in good agreement with the data in the literature. Furthermore, satellite lines arising from shake-off appear in the low-energy side of the Kα1 and Kα2 lines in Se but, in Y and Zr, it was very difficult to identify the contribution of the shake process to the overall lines. The Kβ1,3 natural linewidth of these elements was also corrected using the appropriate instrumental function for this type of x-ray spectrometer, and the spin doublet energies were obtained from the peak positions. The corrected full width at half maximum (FWHM) of the Kβ1 x-ray lines increases linearly with Z, but this tendency was found to be, in general, not linear for Kβ3 x-ray lines. This behavior may be due to the existence of satellite lines originated from shake processes. Simulated line profiles, obtained using the multiconfiguration Dirac-Fock formalism, accounting for radiative and radiationless transitions and shake-off processes, show a very good agreement with the high-resolution experimental spectra.publishersversionpublishe

    AIRE-Deficient Patients Harbor Unique High-Affinity Disease-Ameliorating Autoantibodies

    Get PDF
    APS1/APECED patients are defined by defects in the autoimmune regulator (AIRE) that mediates central T cell tolerance to many self-antigens. AIRE deficiency also affects B cell tolerance, but this is incompletely understood. Here we show that most APS1/APECED patients displayed B cell autoreactivity toward unique sets of approximately 100 self-proteins. Thereby, autoantibodies from 81 patients collectively detected many thousands of human proteins. The loss of B cell tolerance seemingly occurred during antibody affinity maturation, an obligatorily T cell-dependent step. Consistent with this, many APS1/APECED patients harbored extremely high-affinity, neutralizing autoantibodies, particularly against specific cytokines. Such antibodies were biologically active in vitro and in vivo, and those neutralizing type I interferons (IFNs) showed a striking inverse correlation with type I diabetes, not shown by other anti-cytokine antibodies. Thus, naturally occurring human autoantibodies may actively limit disease and be of therapeutic utility.Peer reviewe

    Toward understanding the post-collisional evolution of an orogen influenced by convergence at adjacent plate margins; Late Cretaceous-Tertiary thermotectonic history of the Apuseni Mountains

    Get PDF
    The relationship between syn- to post-collisional orogenic shortening and stresses transmitted from other neighboring plate boundaries is important for understanding the kinematics of mountain belts, but has received little attention so far. The Apuseni Mountains are an example of an orogen in the interference zone between two other subduction systems located in the external Carpathians and Dinarides. This interference is demonstrated by the results of a combined thermochronological and structural field study that quantifies the post-collisional latest Cretaceous-Tertiary evolution. The exhumation history derived from apatite fission track and (U-Th)/He thermochronology indicates that the present-day topography of the Apuseni Mountains originates mainly from latest Cretaceous times, modified by two tectonic pulses during the Paleogene. The latter are suggested by cooling ages clustering around ∼45 Ma and ∼30 Ma and the associated shortening recorded along deep-seated fault systems. Paleogene exhumation pulses are similar in magnitude (∼3.5 km) and are coeval with the final collisional phases recorded in the Dinarides and with part of the Carpathian rotation around the Moesian promontory. These newly quantified Paleogene exhumation and shortening pulses contradict the general view of tectonic quiescence, subsidence and overall sedimentation for this time interval. The Miocene collapse of the Pannonian Basin did not induce significant regional exhumation along the western Apuseni flank, nor did the subsequent Carpathian collision. This is surprising in the overall context of Pannonian Basin formation and its subsequent inversion, in which the Apuseni Mountains were previously interpreted as being significantly uplifted in both deformation stages. Copyright 2011 by the American Geophysical Union

    HGF induces novel EGFR functions involved in resistance formation to tyrosine kinase inhibitors

    No full text
    The epidermal growth factor receptor (EGFR) is overexpressed and activated in many human cancers and predicts poor patient prognosis. Targeting the kinase domain with specific EGFR tyrosine kinase inhibitors (TKIs) like gefitinib and erlotinib has been used in anticancer treatments. However, patient response rates in different human cancers were initially low. Only a subgroup of nonsmall- cell lung cancer (NSCLC) patients harboring EGFR-activating mutations responds to EGFR TKI treatment, but most of these responders relapse and acquire resistance. Recent clinical studies have demonstrated that MET proto-oncogene overexpression correlates with resistance to EGFR TKI treatment. Similarly to MET overexpression, the tumor microenvironment-derived ligand hepatocyte growth factor (HGF) was shown to activate Met and thereby induce short-term resistance to EGFR TKI treatment in gefitinib-sensitive NSCLC cell lines in vitro. However, only little is known about the HGF/Met-induced EGFR TKI resistance mechanism in other human cancer types. Therefore, in order to develop possible new anticancer strategies for diverse human cancers, we screened 12 carcinoma cell lines originating from the breast, kidney, liver and tongue for HGF-induced EGFR tyrosine kinase (TK)-inhibition. In addition, in order to advance our understanding of a TK-inactive EGFR, we used EGFR co-immunoprecipitation, followed by mass spectrometry to identify novel HGF-induced EGFR binding partners, which are potentially involved in tyrosine kinase-independent EGFR signaling mechanisms. Here we show for the first time that HGF-induced EGFR TK-inhibition is a very common mechanism in human cancers, and that the kinase-inactive EGFR directly interacts with and stabilizes several cancer-relevant proteins, including the receptor tyrosine kinases Axl and EphA2, and the CUB domain-containing protein-1. This study has strong implications for the development of new anticancer strategie

    Transfer of environmental signals from the surface to the underground at Ascunsă Cave, Romania

    No full text
    We present here the results of a 4-year environmental monitoring program at Ascunsă Cave (southwestern Romania) designed to help us understand how climate information is transferred through the karst system and archived by speleothems. The air temperature inside the cave is around 7 °C, with slight differences between the upper and lower parts of the main passage. CO2 concentrations in cave air have a seasonal signal, with summer minima and winter maxima. These might indicate the existence of an organic matter reservoir deep within the epikarst that continues to decompose over the winter, and CO2 concentrations are possibly modulated by seasonal differences in cave ventilation. The maximum values of CO2 show a rise after the summer of 2014, from around 2000 to about 3500 ppm, following a rise in surface temperature. Using two newly designed types of water–air equilibrators, we were able to determine the concentration of CO2 dissolved in drip water by measuring its concentration in the equilibrator headspace and then using Henry's law to calculate its concentration in water. This method opens the possibility of continuous data logging using infrared technology, without the need for costly and less reliable chemical determinations. The local meteoric water line (δ2H  =  7.7 δ18O + 10.1), constructed using monthly aggregated rainfall samples, is similar to the global one, revealing the Atlantic as the strongly dominant vapor source. The deuterium excess values, as high as 17 ‰, indicate that precipitation has an important evaporative component, possibly given by moisture recycling over the European continent. The variability of stable isotopes in drip water is similar at all points inside the cave, suggesting that the monitored drip sites are draining a homogenous reservoir. Drip rates, as well as stable isotopes, indicate that the transfer time of water from the surface is on the order of a few days
    corecore