768 research outputs found

    Significance of myocardial tenascin-C expression in left ventricular remodelling and long-term outcome in patients with dilated cardiomyopathy

    Get PDF
    Aim Dilated cardiomyopathy (DCM) has a variety of causes, and no useful approach to predict left ventricular (LV) remodelling and long-term outcome has yet been established. Myocardial tenascin-C (TNC) is known to appear under pathological conditions, possibly to regulate cardiac remodelling. The aim of this study was to clarify the significance of myocardial TNC expression in LV remodelling and the long-term outcome in DCM. Methods and results One hundred and twenty-three consecutive DCM patients who underwent endomyocardial biopsy for initial diagnosis were studied. Expression of TNC in biopsy sections was analysed immunohistochemically to quantify the ratio of the TNC-positive area to the whole myocardial tissue area (TNC area). Clinical parameters associated with TNC area were investigated. The patients were divided into two groups based on receiver operating characteristic analysis of TNC area to predict death: high TNC group with TNC area ≥2.3% (22 patients) and low TNC group with TNC area <2.3% (101 patients). High TNC was associated with diabetes mellitus. Comparing echocardiographic findings between before and 9 months after endomyocardial biopsy, the low TNC group was associated with decreased LV end-diastolic diameter and increased LV ejection fraction, whereas the high TNC group was not. Survival analysis revealed a worse outcome in the high TNC group than in the low TNC group (P < 0.001). Multivariable Cox regression analysis revealed that TNC area was independently associated with poor outcome (HR = 1.347, P = 0.032). Conclusions Increased myocardial TNC expression was associated with worse LV remodeling and long-term outcome in DCM

    Differential regulation of diacylglycerol kinase isoform in human failing hearts

    Get PDF
    Evidence from several studies indicates the importance of Gαq protein-coupled receptor (GPCR) signaling pathway, which includes diacylglycerol (DAG), and protein kinase C, in the development of heart failure. DAG kinase (DGK) acts as an endogenous regulator of GPCR signaling pathway by catalyzing and regulating DAG. Expressions of DGK isoforms α, ε, and ζ in rodent hearts have been detected; however, the expression and alteration of DGK isoforms in a failing human heart has not yet been examined. In this study, we detected mRNA expressions of DGK isoforms γ, η, ε, and ζ in failing human heart samples obtained from patients undergoing cardiovascular surgery with cardiopulmonary bypass. Furthermore, we investigated modulation of DGK isoform expression in these hearts. We found that expressions of DGKη and DGKζ were increased and decreased, respectively, whereas those of DGKγ and DGKε remained unchanged. This is the first report that describes the differential regulation of DGK isoforms in normal and failing human hearts

    Report on Tests and Measurements of Hadronic Interaction Properties with Air Showers

    Full text link
    We present a summary of recent tests and measurements of hadronic interaction properties with air showers. This report has a special focus on muon density measurements. Several experiments reported deviations between simulated and recorded muon densities in extensive air showers, while others reported no discrepancies. We combine data from eight leading air shower experiments to cover shower energies from PeV to tens of EeV. Data are combined using the z-scale, a unified reference scale based on simulated air showers. Energy-scales of experiments are cross-calibrated. Above 10 PeV, we find a muon deficit in simulated air showers for each of the six considered hadronic interaction models. The deficit is increasing with shower energy. For the models EPOS-LHC and QGSJet-II.04, the slope is found significant at 8 sigma.Comment: Submitted to the Proceedings of UHECR201

    Modularization as a system life cycle management strategy:Drivers, barriers, mechanisms and impacts

    Get PDF
    This literature-grounded research contributes to a deeper understanding of modularization as a system life cycle management strategy, by providing a comprehensive view of its key barriers, drivers, possible mechanisms of implementation and impact. This comprehensive view, arranged into a decision-making–driven ontology, enables a decision maker to systematically identify modularization implementation opportunities in different industrial and service domains. The proposed ontology transforms modularization into a fully operationalizable strategy and contributes to a paradigm shift in the understanding of modularization, from a pure design option (i.e. modularity) to a fully strategic choice that, by nature, impacts on many of the system’s life cycle phases and involves a number of stakeholders

    Protein kinase C in heart failure: a therapeutic target?

    Get PDF
    Heart failure (HF) afflicts about 5 million people and causes 300 000 deaths a year in the United States alone. An integral part of the pathogenesis of HF is cardiac remodelling, and the signalling events that regulate it are a subject of intense research. Cardiac remodelling is the sum of responses of the heart to causes of HF, such as ischaemia, myocardial infarction, volume and pressure overload, infection, inflammation, and mechanical injury. These responses, including cardiomyocyte hypertrophy, myocardial fibrosis, and inflammation, involve numerous cellular and structural changes and ultimately result in a progressive decline in cardiac performance. Pharmacological and genetic manipulation of cultured heart cells and animal models of HF and the analysis of cardiac samples from patients with HF are all used to identify the molecular and cellular mechanisms leading to the disease. Protein kinase C (PKC) isozymes, a family of serine–threonine protein kinase enzymes, were found to regulate a number of cardiac responses, including those associated with HF. In this review, we describe the PKC isozymes that play critical roles in specific aspects of cardiac remodelling and dysfunction in HF

    Real-time optical fibre sensor for hydro-alcoholic solutions

    Get PDF
    Abstract The fast determination of ethanol-water concentration in alcohol distillation plants is a primordial requirement to preserve the quality and reduce production losses. The present research proposes an optical fibre sensor for the measurement of hydro-alcoholic concentration in liquids based on the Fresnel reflection principle. The reflection intensities of ethanol samples with 0-100% of water content were measured at different temperatures for 1310 nm and 1550 nm wavelengths. Calibration curves were prepared by fitting the experimental data and implemented in a computer algorithm. According to the functional tests, the sensor is capable of identifying samples with less than 1% error on concentration and providing practically real-time analysis

    Human tribbles-1 controls proliferation and chemotaxis of smooth muscle cells via MAPK signaling pathways

    Get PDF
    Migration and proliferation of smooth muscle cells are key to a number of physiological and pathological processes, including wound healing and the narrowing of the vessel wall.Previous work has shown links between inflammatory stimuli and vascular smooth muscle cell proliferation and migration through mitogen activated protein kinase (MAPK) activation, though the molecular mechanisms of this process are poorly understood. Here we report that tribbles-1, a recently described modulator of MAPK activation controls vascular smooth muscle cell proliferation and chemotaxis via the Jun Kinase pathway. Our findings demonstrate that this regulation takes place via direct interactions between tribbles-1 and MKK4/SEK1, a Jun activator kinase. The activity of this kinase is dependent on tribbles-1 levels, whilst the activation and the expression of MKK4/SEK1 is not. In addition, tribbles-1 expression is elevated in human atherosclerotic arteries compared to non-atherosclerotic controls, suggesting that this protein may pay a role in disease in vivo. In summary, the data presented here suggest an important regulatory role for trb-1 in vascular smooth muscle cell biology

    Mendelian randomization study of B-type natriuretic peptide and type 2 diabetes: evidence of causal association from population studies

    Get PDF
    &lt;p&gt;Background: Genetic and epidemiological evidence suggests an inverse association between B-type natriuretic peptide (BNP) levels in blood and risk of type 2 diabetes (T2D), but the prospective association of BNP with T2D is uncertain, and it is unclear whether the association is confounded.&lt;/p&gt; &lt;p&gt;Methods and Findings: We analysed the association between levels of the N-terminal fragment of pro-BNP (NT-pro-BNP) in blood and risk of incident T2D in a prospective case-cohort study and genotyped the variant rs198389 within the BNP locus in three T2D case-control studies. We combined our results with existing data in a meta-analysis of 11 case-control studies. Using a Mendelian randomization approach, we compared the observed association between rs198389 and T2D to that expected from the NT-pro-BNP level to T2D association and the NT-pro-BNP difference per C allele of rs198389. In participants of our case-cohort study who were free of T2D and cardiovascular disease at baseline, we observed a 21% (95% CI 3%-36%) decreased risk of incident T2D per one standard deviation (SD) higher log-transformed NT-pro-BNP levels in analysis adjusted for age, sex, body mass index, systolic blood pressure, smoking, family history of T2D, history of hypertension, and levels of triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol. The association between rs198389 and T2D observed in case-control studies (odds ratio = 0.94 per C allele, 95% CI 0.91-0.97) was similar to that expected (0.96, 0.93-0.98) based on the pooled estimate for the log-NT-pro-BNP level to T2D association derived from a meta-analysis of our study and published data (hazard ratio = 0.82 per SD, 0.74-0.90) and the difference in NT-pro-BNP levels (0.22 SD, 0.15-0.29) per C allele of rs198389. No significant associations were observed between the rs198389 genotype and potential confounders.&lt;/p&gt; &lt;p&gt;Conclusions: Our results provide evidence for a potential causal role of the BNP system in the aetiology of T2D. Further studies are needed to investigate the mechanisms underlying this association and possibilities for preventive interventions.&lt;/p&gt

    The diacylglycerol kinase α/Atypical PKC/β1 integrin pathway in SDF-1α mammary carcinoma invasiveness

    Get PDF
    Diacylglycerol kinase α (DGKα), by phosphorylating diacylglycerol into phosphatidic acid, provides a key signal driving cell migration and matrix invasion. We previously demonstrated that in epithelial cells activation of DGKα activity promotes cytoskeletal remodeling and matrix invasion by recruiting atypical PKC at ruffling sites and by promoting RCP-mediated recycling of α5β1 integrin to the tip of pseudopods. In here we investigate the signaling pathway by which DGKα mediates SDF-1α-induced matrix invasion of MDA-MB-231 invasive breast carcinoma cells. Indeed we showed that, following SDF-1α stimulation, DGKα is activated and localized at cell protrusion, thus promoting their elongation and mediating SDF-1α induced MMP-9 metalloproteinase secretion and matrix invasion. Phosphatidic acid generated by DGKα promotes localization at cell protrusions of atypical PKCs which play an essential role downstream of DGKα by promoting Rac-mediated protrusion elongation and localized recruitment of β1 integrin and MMP-9. We finally demonstrate that activation of DGKα, atypical PKCs signaling and β1 integrin are all essential for MDA-MB-231 invasiveness. These data indicates the existence of a SDF-1α induced DGKα - atypical PKC - β1 integrin signaling pathway, which is essential for matrix invasion of carcinoma cells
    corecore