1,031 research outputs found
Interferometric Detection of Planets/Gaps in Protoplanetary Disks
We investigate the possibility to find evidence for planets in circumstellar
disks by infrared and submillimeter interferometry. Hydrodynamical simulations
of a circumstellar disk around a solar-type star with an embedded planet of 1
Jupiter mass are presented. On the basis of 3D radiative transfer simulations,
images of this system are calculated. These intensity maps provide the basis
for the simulation of the interferometers VLTI (equipped with the mid-infrared
instrument MIDI) and ALMA. While ALMA will provide the necessary basis for a
direct gap and therefore indirect planet detection, MIDI/VLTI will provide the
possibility to distinguish between disks with or without accretion on the
central star on the basis of visibility measurements.Comment: 4 pages, TeX (or Latex, etc); to appear in proceedings of "Scientific
Frontiers in Research on Extrasolar Planets
Detecting planets in protoplanetary disks: A prospective study
We investigate the possibility to find evidence for planets in circumstellar
disks by infrared and submillimeter interferometry. We present simulations of a
circumstellar disk around a solar-type star with an embedded planet of 1
Jupiter mass. The three-dimensional (3D) density structure of the disk results
from hydrodynamical simulations. On the basis of 3D radiative transfer
simulations, images of this system were calculated. The intensity maps provide
the basis for the simulation of the interferometers VLTI (equipped with the
mid-infrared instrument MIDI) and ALMA. While MIDI/VLTI will not provide the
possibility to distinguish between disks with or without a gap on the basis of
visibility measurements, ALMA will provide the necessary basis for a direct gap
detection.Comment: 5 page
Modeling the resonant planetary system GJ876
The two planets about the star GJ 876 appear to have undergone extensive
migration from their point of origin in the protoplanetary disk -- both because
of their close proximity to the star (30 and 60 day orbital periods) and
because of their occupying three stable orbital resonances at the 2:1
mean-motion commensurability. The resonances were most likely established by
converging differential migration of the planets leading to capture into the
resonances. A problem with this scenario is that continued migration of the
system while it is trapped in the resonances leads to orbital eccentricities
that rapidly exceed the observational upper limits of e_1 = 0.31 and e_2 =
0.05. As seen in forced 3-body simulations, lower eccentricities would persist
during migration only for an applied eccentricity damping.
Here we explore the evolution of the GJ 876 system using two-dimensional
hydrodynamical simulations that include viscous heating and radiative effects.
We find that a hydrodynamic evolution within the resonance, where only the
outer planet interacts with the disk, always rapidly leads to large values of
eccentricities that exceed those observed.
Only if mass is removed from the disk on a time scale of the order of the
migration time scale (before there has been extensive migration after capture),
as might occur for photoevaporation in the late phases of planet formation, can
we end up with eccentricities that are consistent with the observations.Comment: Paper accepted by A&A, 17 Pages, 17 Figure
Low-mass planets in nearly inviscid disks: Numerical treatment
Embedded planets disturb the density structure of the ambient disk and
gravitational back-reaction will induce possibly a change in the planet's
orbital elements. The accurate determination of the forces acting on the planet
requires careful numerical analysis. Recently, the validity of the often used
fast orbital advection algorithm (FARGO) has been put into question, and
special numerical resolution and stability requirements have been suggested. In
this paper we study the process of planet-disk interaction for small mass
planets of a few Earth masses, and reanalyze the numerical requirements to
obtain converged and stable results. One focus lies on the applicability of the
FARGO-algorithm. Additionally, we study the difference of two and
three-dimensional simulations, compare global with local setups, as well as
isothermal and adiabatic conditions. We study the influence of the planet on
the disk through two- and three-dimensional hydrodynamical simulations. To
strengthen our conclusions we perform a detailed numerical comparison where
several upwind and Riemann-solver based codes are used with and without the
FARGO-algorithm.
With respect to the wake structure and the torque density acting on the
planet we demonstrate that the FARGO-algorithm yields correct results, and that
at a fraction of the regular cpu-time. We find that the resolution requirements
for achieving convergent results in unshocked regions are rather modest and
depend on the pressure scale height of the disk. By comparing the torque
densities of 2D and 3D simulations we show that a suitable vertical averaging
procedure for the force gives an excellent agreement between the two. We show
that isothermal and adiabatic runs can differ considerably, even for adiabatic
indices very close to unity.Comment: accepted by Astronomy & Astrophysic
Spectral Types of Planetary Host Star Candidates: Two New Transiting Planets?
Recently, 46 low-luminosity object transits were reported from the Optical
Gravitational Lensing Experiment. Our follow-up spectroscopy of the 16 most
promising candidates provides a spectral classification of the primary.
Together with the radius ratio from the transit measurements, we derived the
radii of the low-luminosity companions. This allows to examine the possible
sub-stellar nature of these objects. Fourteen of them can be clearly identified
as low-mass stars. Two objects, OGLE-TR-03 and OGLE-TR-10 have companions with
radii of 0.15 R_sun which is very similar to the radius of the transiting
planet HD209458B. The planetary nature of these two objects should therefore be
confirmed by dynamical mass determinations.Comment: 4 pages, 3 figures, accepted for publication by A&A Letter
A torque formula for non-isothermal Type I planetary migration - II. Effects of diffusion
We study the effects of diffusion on the non-linear corotation torque, or
horseshoe drag, in the two-dimensional limit, focusing on low-mass planets for
which the width of the horseshoe region is much smaller than the scale height
of the disc. In the absence of diffusion, the non-linear corotation torque
saturates, leaving only the Lindblad torque. Diffusion of heat and momentum can
act to sustain the corotation torque. In the limit of very strong diffusion,
the linear corotation torque is recovered. For the case of thermal diffusion,
this limit corresponds to having a locally isothermal equation of state. We
present some simple models that are able to capture the dependence of the
torque on diffusive processes to within 20% of the numerical simulations.Comment: 12 pages, 8 figures, accepted for publication in MNRA
RODEO: a new method for planet-disk interaction
In this paper we describe a new method for studying the hydrodynamical
problem of a planet embedded in a gaseous disk. We use a finite volume method
with an approximate Riemann solver (the Roe solver), together with a special
way to integrate the source terms. This new source term integration scheme
sheds new light on the Coriolis instability, and we show that our method does
not suffer from this instability. The first results on flow structure and gap
formation are presented, as well as accretion and migration rates. For Mpl <
0.1 M_J and Mpl > 1.0 M_J (M_J = Jupiter's mass) the accretion rates do not
depend sensitively on numerical parameters, and we find that within the disk's
lifetime a planet can grow to 3-4 M_J. In between these two limits numerics
play a major role, leading to differences of more than 50 % for different
numerical parameters. Migration rates are not affected by numerics at all as
long as the mass inside the Roche lobe is not considered. We can reproduce the
Type I and Type II migration for low-mass and high-mass planets, respectively,
and the fastest moving planet of 0.1 M_J has a migration time of only 2.0 10^4
yr.Comment: Accepted for publication in A&
The accretion and spreading of matter on white dwarfs
For a slowly rotating non-magnetized white dwarf the accretion disk extends
all the way to the star. Here the matter impacts and spreads towards the poles
as new matter continuously piles up behind it. We have solved the 3d
compressible Navier-Stokes equations on an axisymmetric grid to determine the
structure of this boundary layer for different viscosities corresponding to
different accretion rates. The high viscosity cases show a spreading BL which
sets off a gravity wave in the surface matter. The accretion flow moves
supersonically over the cusp making it susceptible to the rapid development of
gravity wave and/or Kelvin-Helmholtz instabilities. This BL is optically thick
and extends more than 30 degrees to either side of the disk plane after 3/4 of
a Keplerian rotation period (t=19s). The low viscosity cases also show a
spreading BL, but here the accretion flow does not set off gravity waves and it
is optically thin.Comment: 6 pages, 5 figures, requires autart.cl
Three-dimensional Calculations of High and Low-mass Planets Embedded in Protoplanetary Discs
We analyse the non-linear, three-dimensional response of a gaseous, viscous
protoplanetary disc to the presence of a planet of mass ranging from one Earth
mass (1 M) to one Jupiter mass (1 M) by using the ZEUS hydrodynamics
code. We determine the gas flow pattern, and the accretion and migration rates
of the planet. The planet is assumed to be in a fixed circular orbit about the
central star. It is also assumed to be able to accrete gas without expansion on
the scale of its Roche radius. Only planets with masses M \gsim 0.1 M
produce significant perturbations in the disc's surface density. The flow
within the Roche lobe of the planet is fully three-dimensional. Gas streams
generally enter the Roche lobe close to the disc midplane, but produce much
weaker shocks than the streams in two-dimensional models. The streams supply
material to a circumplanetary disc that rotates in the same sense as the
planet's orbit. Much of the mass supply to the circumplanetary disc comes from
non-coplanar flow. The accretion rate peaks with a planet mass of approximately
0.1 M and is highly efficient, occurring at the local viscous rate. The
migration timescales for planets of mass less than 0.1 M, based on torques
from disc material outside the planets' Roche lobes, are in excellent agreement
with the linear theory of Type I (non-gap) migration for three-dimensional
discs. The transition from Type I to Type II (gap) migration is smooth, with
changes in migration times of about a factor of 2. Starting with a core which
can undergo runaway growth, a planet can gain up to a few M with little
migration. Planets with final masses of order 10 M would undergo large
migration, which makes formation and survival difficult.Comment: Accepted by MNRAS, 18 pages, 13 figures (6 degraded resolution).
Paper with high-resolution figures available at
http://www.astro.ex.ac.uk/people/mbate
On the horseshoe drag of a low-mass planet. II Migration in adiabatic disks
We evaluate the horseshoe drag exerted on a low-mass planet embedded in a
gaseous disk, assuming the disk's flow in the coorbital region to be adiabatic.
We restrict this analysis to the case of a planet on a circular orbit, and we
assume a steady flow in the corotating frame. We also assume that the
corotational flow upstream of the U-turns is unperturbed, so that we discard
saturation effects. In addition to the classical expression for the horseshoe
drag in barotropic disks, which features the vortensity gradient across
corotation, we find an additional term which scales with the entropy gradient,
and whose amplitude depends on the perturbed pressure at the stagnation point
of the horseshoe separatrices. This additional torque is exerted by evanescent
waves launched at the horseshoe separatrices, as a consequence of an asymmetry
of the horseshoe region. It has a steep dependence on the potential's softening
length, suggesting that the effect can be extremely strong in the three
dimensional case. We describe the main properties of the coorbital region (the
production of vortensity during the U-turns, the appearance of vorticity sheets
at the downstream separatrices, and the pressure response), and we give torque
expressions suitable to this regime of migration. Side results include a weak,
negative feed back on migration, due to the dependence of the location of the
stagnation point on the migration rate, and a mild enhancement of the
vortensity related torque at large entropy gradient.Comment: Accepted for publication in Ap
- …