1,031 research outputs found

    Interferometric Detection of Planets/Gaps in Protoplanetary Disks

    Get PDF
    We investigate the possibility to find evidence for planets in circumstellar disks by infrared and submillimeter interferometry. Hydrodynamical simulations of a circumstellar disk around a solar-type star with an embedded planet of 1 Jupiter mass are presented. On the basis of 3D radiative transfer simulations, images of this system are calculated. These intensity maps provide the basis for the simulation of the interferometers VLTI (equipped with the mid-infrared instrument MIDI) and ALMA. While ALMA will provide the necessary basis for a direct gap and therefore indirect planet detection, MIDI/VLTI will provide the possibility to distinguish between disks with or without accretion on the central star on the basis of visibility measurements.Comment: 4 pages, TeX (or Latex, etc); to appear in proceedings of "Scientific Frontiers in Research on Extrasolar Planets

    Detecting planets in protoplanetary disks: A prospective study

    Get PDF
    We investigate the possibility to find evidence for planets in circumstellar disks by infrared and submillimeter interferometry. We present simulations of a circumstellar disk around a solar-type star with an embedded planet of 1 Jupiter mass. The three-dimensional (3D) density structure of the disk results from hydrodynamical simulations. On the basis of 3D radiative transfer simulations, images of this system were calculated. The intensity maps provide the basis for the simulation of the interferometers VLTI (equipped with the mid-infrared instrument MIDI) and ALMA. While MIDI/VLTI will not provide the possibility to distinguish between disks with or without a gap on the basis of visibility measurements, ALMA will provide the necessary basis for a direct gap detection.Comment: 5 page

    Modeling the resonant planetary system GJ876

    Full text link
    The two planets about the star GJ 876 appear to have undergone extensive migration from their point of origin in the protoplanetary disk -- both because of their close proximity to the star (30 and 60 day orbital periods) and because of their occupying three stable orbital resonances at the 2:1 mean-motion commensurability. The resonances were most likely established by converging differential migration of the planets leading to capture into the resonances. A problem with this scenario is that continued migration of the system while it is trapped in the resonances leads to orbital eccentricities that rapidly exceed the observational upper limits of e_1 = 0.31 and e_2 = 0.05. As seen in forced 3-body simulations, lower eccentricities would persist during migration only for an applied eccentricity damping. Here we explore the evolution of the GJ 876 system using two-dimensional hydrodynamical simulations that include viscous heating and radiative effects. We find that a hydrodynamic evolution within the resonance, where only the outer planet interacts with the disk, always rapidly leads to large values of eccentricities that exceed those observed. Only if mass is removed from the disk on a time scale of the order of the migration time scale (before there has been extensive migration after capture), as might occur for photoevaporation in the late phases of planet formation, can we end up with eccentricities that are consistent with the observations.Comment: Paper accepted by A&A, 17 Pages, 17 Figure

    Low-mass planets in nearly inviscid disks: Numerical treatment

    Full text link
    Embedded planets disturb the density structure of the ambient disk and gravitational back-reaction will induce possibly a change in the planet's orbital elements. The accurate determination of the forces acting on the planet requires careful numerical analysis. Recently, the validity of the often used fast orbital advection algorithm (FARGO) has been put into question, and special numerical resolution and stability requirements have been suggested. In this paper we study the process of planet-disk interaction for small mass planets of a few Earth masses, and reanalyze the numerical requirements to obtain converged and stable results. One focus lies on the applicability of the FARGO-algorithm. Additionally, we study the difference of two and three-dimensional simulations, compare global with local setups, as well as isothermal and adiabatic conditions. We study the influence of the planet on the disk through two- and three-dimensional hydrodynamical simulations. To strengthen our conclusions we perform a detailed numerical comparison where several upwind and Riemann-solver based codes are used with and without the FARGO-algorithm. With respect to the wake structure and the torque density acting on the planet we demonstrate that the FARGO-algorithm yields correct results, and that at a fraction of the regular cpu-time. We find that the resolution requirements for achieving convergent results in unshocked regions are rather modest and depend on the pressure scale height of the disk. By comparing the torque densities of 2D and 3D simulations we show that a suitable vertical averaging procedure for the force gives an excellent agreement between the two. We show that isothermal and adiabatic runs can differ considerably, even for adiabatic indices very close to unity.Comment: accepted by Astronomy & Astrophysic

    Spectral Types of Planetary Host Star Candidates: Two New Transiting Planets?

    Get PDF
    Recently, 46 low-luminosity object transits were reported from the Optical Gravitational Lensing Experiment. Our follow-up spectroscopy of the 16 most promising candidates provides a spectral classification of the primary. Together with the radius ratio from the transit measurements, we derived the radii of the low-luminosity companions. This allows to examine the possible sub-stellar nature of these objects. Fourteen of them can be clearly identified as low-mass stars. Two objects, OGLE-TR-03 and OGLE-TR-10 have companions with radii of 0.15 R_sun which is very similar to the radius of the transiting planet HD209458B. The planetary nature of these two objects should therefore be confirmed by dynamical mass determinations.Comment: 4 pages, 3 figures, accepted for publication by A&A Letter

    A torque formula for non-isothermal Type I planetary migration - II. Effects of diffusion

    Full text link
    We study the effects of diffusion on the non-linear corotation torque, or horseshoe drag, in the two-dimensional limit, focusing on low-mass planets for which the width of the horseshoe region is much smaller than the scale height of the disc. In the absence of diffusion, the non-linear corotation torque saturates, leaving only the Lindblad torque. Diffusion of heat and momentum can act to sustain the corotation torque. In the limit of very strong diffusion, the linear corotation torque is recovered. For the case of thermal diffusion, this limit corresponds to having a locally isothermal equation of state. We present some simple models that are able to capture the dependence of the torque on diffusive processes to within 20% of the numerical simulations.Comment: 12 pages, 8 figures, accepted for publication in MNRA

    RODEO: a new method for planet-disk interaction

    Get PDF
    In this paper we describe a new method for studying the hydrodynamical problem of a planet embedded in a gaseous disk. We use a finite volume method with an approximate Riemann solver (the Roe solver), together with a special way to integrate the source terms. This new source term integration scheme sheds new light on the Coriolis instability, and we show that our method does not suffer from this instability. The first results on flow structure and gap formation are presented, as well as accretion and migration rates. For Mpl < 0.1 M_J and Mpl > 1.0 M_J (M_J = Jupiter's mass) the accretion rates do not depend sensitively on numerical parameters, and we find that within the disk's lifetime a planet can grow to 3-4 M_J. In between these two limits numerics play a major role, leading to differences of more than 50 % for different numerical parameters. Migration rates are not affected by numerics at all as long as the mass inside the Roche lobe is not considered. We can reproduce the Type I and Type II migration for low-mass and high-mass planets, respectively, and the fastest moving planet of 0.1 M_J has a migration time of only 2.0 10^4 yr.Comment: Accepted for publication in A&

    The accretion and spreading of matter on white dwarfs

    Full text link
    For a slowly rotating non-magnetized white dwarf the accretion disk extends all the way to the star. Here the matter impacts and spreads towards the poles as new matter continuously piles up behind it. We have solved the 3d compressible Navier-Stokes equations on an axisymmetric grid to determine the structure of this boundary layer for different viscosities corresponding to different accretion rates. The high viscosity cases show a spreading BL which sets off a gravity wave in the surface matter. The accretion flow moves supersonically over the cusp making it susceptible to the rapid development of gravity wave and/or Kelvin-Helmholtz instabilities. This BL is optically thick and extends more than 30 degrees to either side of the disk plane after 3/4 of a Keplerian rotation period (t=19s). The low viscosity cases also show a spreading BL, but here the accretion flow does not set off gravity waves and it is optically thin.Comment: 6 pages, 5 figures, requires autart.cl

    Three-dimensional Calculations of High and Low-mass Planets Embedded in Protoplanetary Discs

    Get PDF
    We analyse the non-linear, three-dimensional response of a gaseous, viscous protoplanetary disc to the presence of a planet of mass ranging from one Earth mass (1 Me_e) to one Jupiter mass (1 MJ_J) by using the ZEUS hydrodynamics code. We determine the gas flow pattern, and the accretion and migration rates of the planet. The planet is assumed to be in a fixed circular orbit about the central star. It is also assumed to be able to accrete gas without expansion on the scale of its Roche radius. Only planets with masses M \gsim 0.1 MJ_J produce significant perturbations in the disc's surface density. The flow within the Roche lobe of the planet is fully three-dimensional. Gas streams generally enter the Roche lobe close to the disc midplane, but produce much weaker shocks than the streams in two-dimensional models. The streams supply material to a circumplanetary disc that rotates in the same sense as the planet's orbit. Much of the mass supply to the circumplanetary disc comes from non-coplanar flow. The accretion rate peaks with a planet mass of approximately 0.1 MJ_J and is highly efficient, occurring at the local viscous rate. The migration timescales for planets of mass less than 0.1 MJ_J, based on torques from disc material outside the planets' Roche lobes, are in excellent agreement with the linear theory of Type I (non-gap) migration for three-dimensional discs. The transition from Type I to Type II (gap) migration is smooth, with changes in migration times of about a factor of 2. Starting with a core which can undergo runaway growth, a planet can gain up to a few MJ_J with little migration. Planets with final masses of order 10 MJ_J would undergo large migration, which makes formation and survival difficult.Comment: Accepted by MNRAS, 18 pages, 13 figures (6 degraded resolution). Paper with high-resolution figures available at http://www.astro.ex.ac.uk/people/mbate

    On the horseshoe drag of a low-mass planet. II Migration in adiabatic disks

    Full text link
    We evaluate the horseshoe drag exerted on a low-mass planet embedded in a gaseous disk, assuming the disk's flow in the coorbital region to be adiabatic. We restrict this analysis to the case of a planet on a circular orbit, and we assume a steady flow in the corotating frame. We also assume that the corotational flow upstream of the U-turns is unperturbed, so that we discard saturation effects. In addition to the classical expression for the horseshoe drag in barotropic disks, which features the vortensity gradient across corotation, we find an additional term which scales with the entropy gradient, and whose amplitude depends on the perturbed pressure at the stagnation point of the horseshoe separatrices. This additional torque is exerted by evanescent waves launched at the horseshoe separatrices, as a consequence of an asymmetry of the horseshoe region. It has a steep dependence on the potential's softening length, suggesting that the effect can be extremely strong in the three dimensional case. We describe the main properties of the coorbital region (the production of vortensity during the U-turns, the appearance of vorticity sheets at the downstream separatrices, and the pressure response), and we give torque expressions suitable to this regime of migration. Side results include a weak, negative feed back on migration, due to the dependence of the location of the stagnation point on the migration rate, and a mild enhancement of the vortensity related torque at large entropy gradient.Comment: Accepted for publication in Ap
    • …
    corecore