103 research outputs found

    Disentangling the effects of El Niño on a population of the polychaete <i>Sigambra bassi</i> in the Bay of Ancón, Peru

    No full text
    International audienceThe macrobenthic community in shallow soft-bottom areas in the Bay of Ancón, Peru, is characterized by low biodiversity due to low oxygen concentrations. During El Niño (EN) events, higher water temperature and higher concentrations of dissolved oxygen induce a temporary increase in biodiversity. However, the structure and dynamics of the emerging macrobenthic community and populations, especially the polychaete Sigambra bassi, vary strongly among events. The reasons for this variation are poorly understood, in particular the relative influence of abiotic versus biotic factors. To disentangle how abiotic and biotic factors influence the different responses of the population of S. bassi, population models were developed based on detailed long-term monitoring data, which include four El Niño events. The results show that S. bassi abundances are favored by abiotic environmental conditions during EN, namely high temperature and dissolved oxygen concentration, but these abiotic effects are modulated by different biotic processes. In two EN events with relatively similarly high temperature anomalies (EN 1982-1983 and 1997-1998) different biological interactions (competition, predation, facilitation) and different species composition of the community resulted in different responses of the population of S. bassi

    Biomass-modulated fire dynamics during the last glacial-interglacial transition at the central pyrenees (Spain)

    Get PDF
    Understanding long-term fire ecology is essential for current day interpretation of ecosystem fire responses. However palaeoecology of fire is still poorly understood, especially at high-altitude mountain environments, despite the fact that these are fire-sensitive ecosystems and their resilience might be affected by changing fire regimes. We reconstruct wildfire occurrence since the Lateglacial (14.7. cal. ka BP) to the Mid-Holocene (6. cal. ka BP) and investigate the climate-fuel-fire relationships in a sedimentary sequence located at the treeline in the Central Spanish Pyrenees. Pollen, macro- and micro-charcoal were analysed for the identification of fire events (FE) in order to detect vegetation post-fire response and to define biomass-fire interactions. mean fire intervals (mfi) reduced since the Lateglacial, peaking at 9-7.7. cal. ka BP while from 7.7 to 6. cal. ka BP no fire is recorded. We hypothesise that Early Holocene maximum summer insolation, as climate forcing, and mesophyte forest expansion, as a fuel-creating factor, were responsible for accelerating fire occurrence in the Central Pyrenees treeline. We also found that fire had long-lasting negative effects on most of the treeline plant communities and that forest contraction from 7.7. cal. ka BP is likely linked to the ecosystem's threshold response to high fire frequencies.This research has been funded by the projects DINAMO (CGL2009-07992) (funding EGPF — grant ref. BES-2010-038593 and MSC), DINAMO2 (CGL2012-33063), ARAFIRE (2012 GA LC 064), GRACCIE-CONSOLIDER (CSD2007-00067). GGR was funded by the Juan de la Cierva Program (grant ref. JCI2009-04345) and JAE-Doc CSIC Program, LLM was supported by a postdoctoral MINT fellowship funded by the Institute for the Environment (Brunel University), AMC is a Ramón y Cajal fellow (ref: RYC-2008-02431), APS holds a grant funded by the Aragon Government (ref. 17030G/5423/480072/14003) and JAE holds a grant funded by the Basque Country Government (BFI-2010-5)

    Improving the forecast for biodiversity under climate change

    Get PDF
    Acknowledgments: This paper originates from the “Ecological Interactions and Range Evolution Under Environmental Change” and “RangeShifter” working groups, supported by the Synthesis Centre of the German Centre for Integrative Biodiversity Research (DFG-FZT-118), DIVERSITAS, and its core projects bioDISCOVERY and bioGENESIS. Supported by the Canada Research Chair, Natural Sciences and Engineering Research Council of Canada, and Quebec Centre for Biodiversity Science (A.G.); the University of Florida Foundation (R.D.H.); KU Leuven Research Fund grant PF/2010/07, ERA-Net BiodivERsA TIPPINGPOND, and Belspo IAP SPEEDY (L.D.M.); European Union Biodiversity Observation Network grant EU-BON-FP7-308454 (J.-B.M. and G.P.); KU Leuven Research Fund (J.P.); and NSF grants DEB-1119877 and PLR-1417754 and the McDonnell Foundation (M.C.U.).Peer reviewedPostprin

    Landscape determinants of European roller foraging habitat: implications for the definition of agri-environmental measures for species conservation

    Get PDF
    Across much of Europe, farmland birds are declining more than those in other habitats. From a conservation perspective, identifying the primary preferred habitats could help improve the foraging conditions of target species and, consequently, enhance their breeding success and survival. Here, we investigated the ranging behaviour and foraging habitat selection of the European roller (Coracias garrulus) during the breeding season in an agricultural landscape of South Iberia. The occurrence of foraging rollers was predicted to gradually increase with decreasing distance from the nest and increasing availability of perches, such as fences and electric wires. Traditional olive groves and stubble fields were positively and negatively associated with the occurrence of rollers, respectively. Additionally, analysis of hunting strikes showed that rollers highly prefer foraging in fallows rather than cereal or stubble fields. Prey surveys revealed that fallows had the highest abundance of grasshoppers, rollers’ preferred prey during chick-rearing. Pair home-ranges, obtained from 95% fixed Kernel estimators averaged 70.9 ha (range = 34–118 ha) and most foraging trips (80%) occurred in the close vicinity of the nest (<500 m). Number of chicks fledged was not affected by mean foraging distances travelled during the chick-rearing period. Overall, our results suggest that traditional extensive practices of cereal cultivation, with large areas of low-intensity grazed fallows, represent a high-quality foraging habitat for rollers and should be promoted through agri-environmental schemes within at least 1-km radius from the nest. These recommendations are targeted at the roller, but have been shown to apply broadly to several other steppe-bird species

    Resilience trinity: Safeguarding ecosystem functioning and services across three different time horizons and decision contexts

    Get PDF
    Ensuring ecosystem resilience is an intuitive approach to safeguard the functioning of ecosystems and hence the future provisioning of ecosystem services (ES). However, resilience is a multi‐faceted concept that is difficult to operationalize. Focusing on resilience mechanisms, such as diversity, network architectures or adaptive capacity, has recently been suggested as means to operationalize resilience. Still, the focus on mechanisms is not specific enough. We suggest a conceptual framework, resilience trinity, to facilitate management based on resilience mechanisms in three distinctive decision contexts and time‐horizons: 1) reactive, when there is an imminent threat to ES resilience and a high pressure to act, 2) adjustive, when the threat is known in general but there is still time to adapt management and 3) provident, when time horizons are very long and the nature of the threats is uncertain, leading to a low willingness to act. Resilience has different interpretations and implications at these different time horizons, which also prevail in different disciplines. Social ecology, ecology and engineering are often implicitly focussing on provident, adjustive or reactive resilience, respectively, but these different notions of resilience and their corresponding social, ecological and economic tradeoffs need to be reconciled. Otherwise, we keep risking unintended consequences of reactive actions, or shying away from provident action because of uncertainties that cannot be reduced. The suggested trinity of time horizons and their decision contexts could help ensuring that longer‐term management actions are not missed while urgent threats to ES are given priority

    Resilience trinity: safeguarding ecosystem functioning and services across three different time horizons and decision contexts

    Get PDF
    Ensuring ecosystem resilience is an intuitive approach to safeguard the functioning of ecosystems and hence the future provisioning of ecosystem services (ES). However, resilience is a multi-faceted concept that is difficult to operationalize. Focusing on resilience mechanisms, such as diversity, network architectures or adaptive capacity, has recently been suggested as means to operationalize resilience. Still, the focus on mechanisms is not specific enough. We suggest a conceptual framework, resilience trinity, to facilitate management based on resilience mechanisms in three distinctive decision contexts and time-horizons: i) reactive, when there is an imminent threat to ES resilience and a high pressure to act, ii) adjustive, when the threat is known in general but there is still time to adapt management, and iii) provident, when time horizons are very long and the nature of the threats is uncertain, leading to a low willingness to act. Resilience has different interpretations and implications at these different time horizons, which also prevail in different disciplines. Social ecology, ecology, and engineering are often implicitly focussing on provident, adjustive, or reactive resilience, respectively, but these different notions and of resilience and their corresponding social, ecological, and economic trade-offs need to be reconciled. Otherwise, we keep risking unintended consequences of reactive actions, or shying away from provident action because of uncertainties that cannot be reduced. The suggested trinity of time horizons and their decision contexts could help ensuring that longer-term management actions are not missed while urgent threats to ES are given priority

    Carbonyl Reductase 3 (CBR3) Mediates 9-cis-Retinoic Acid-Induced Cytostatis and is a Potential Prognostic Marker for Oral Malignancy

    Get PDF
    The molecular mechanisms of growth suppression by retinoic acid (RA) were examined. Our results suggest that the cytostatic effects of RA could be mediated by the activation of endogenous CBR3 gene in oral squamous cell carcinomas (OSCCs), and the expression is a potential marker for oral malignancy
    corecore