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Abstract: New biological models are incorporating the realistic processes underlying biological 41 

responses to climate change and other human-caused disturbances. However, these more realistic 42 

models require detailed information, which is lacking for most species on Earth. Current 43 

monitoring efforts mainly document changes in biodiversity, rather than collect the mechanistic 44 

data needed to predict future changes. Here, we describe and prioritize the biological information 45 

needed to inform more realistic projections of species responses to climate change. We also 46 

highlight how trait-based approaches and adaptive modeling can leverage sparse data to make 47 

broader predictions. We outline a global effort to collect the data necessary to better understand, 48 

anticipate, and reduce the damaging effects of climate change on biodiversity. 49 

 50 

 51 

 52 

 53 

  54 
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Main Text:  55 

Introduction 56 

We need to predict how climate change will alter biodiversity in order to prevent serious damage 57 

to the biosphere (7). Biologists develop predictive models to anticipate how environmental 58 

changes might affect the future properties of species and ecosystems (8, 9). Many models have 59 

been developed to understand climate change impacts (Fig. S1) (10), but biological responses 60 

remain difficult to predict (11, 12). One reason is that most models forecasting biodiversity 61 

change ignore underlying mechanisms such as demographic shifts, species interactions, and 62 

evolution, and instead extrapolate correlations between current species’ ranges and climate (Fig. 63 

1) (10). These omissions are troubling because we know that these missing biological 64 

mechanisms played key roles in mediating past and present biotic responses to climate change 65 

(13-15). Moreover, models ignoring biological mechanisms often become unreliable when 66 

extrapolated to novel conditions (16-19). As climates and ecological communities without 67 

historical precedent become more common and correlations between current species distributions 68 

and climate become uncoupled (16, 20, 21), we cannot rely on tools based on statistical 69 

descriptions of the past. Given the essential role of biological processes in mediating species 70 

responses to climate change, accurate forecasts of future biodiversity likely will require more 71 

realistic models. 72 

Emerging models incorporate fundamental biological mechanisms rather than rely solely 73 

on statistical correlations (6, 22-24). Unlike correlative approaches, mechanistic models do not 74 

assume that a species’ range reflects its niche perfectly, has reached equilibrium with the 75 

environment, or is independent of species interactions – all commonly violated assumptions (13, 76 

19, 25, 26). Mechanistic models also can integrate multiple, interacting biological processes, 77 
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nonlinear and stochastic dynamics (Fig. 2) (6, 23, 27), and can better characterize uncertainty by 78 

directly modeling error sources (8, 26, 28).  79 

By incorporating realistic processes such as demography and dispersal, mechanistic 80 

models commonly outperform correlative approaches in projecting climate change responses 81 

(19, 25). For example, mechanistic models consistently predicted simulated species’ range 82 

dynamics over 75 years, whereas correlative models became increasingly inaccurate over this 83 

same timeframe (25). Mechanistic models improve predictive accuracy especially when species 84 

face strong biotic interactions, experience novel climates, or cannot disperse far (19, 25, 29). 85 

Moreover, mechanistic models can inform predictive efforts by indicating processes (e.g., biotic 86 

limits on ranges) hidden by current associations between environments and species distributions 87 

(29). Although more work is needed to craft more sophisticated and accurate mechanistic models 88 

that are customizable for individual species and ecosystems, the tools are already mature enough 89 

to improve projections (8, 22, 24).  90 

Mechanistic models, however, require high-quality data about how a species’ unique 91 

biology governs its responses to climate. Parameters provide this information. For example, a 92 

parameter like population growth rate determines how population abundances change through 93 

time. In contrast, model variables like population abundance describe emergent properties. 94 

Differentiating between parameters and variables is important given the recent focus on 95 

harmonizing efforts to collect variables that monitor the state of global biodiversity (30). We 96 

believe that such endeavors should not focus solely on collecting variables that indicate the state 97 

of biodiversity, but also on measuring mechanistic parameters critical for predicting future 98 

responses.  99 
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Here we identify the mechanistic data needed to make substantial gains in predictive 100 

modeling. Rather than focusing on one particular mechanism (21, 23, 27, 31, 32), we take a 101 

comprehensive approach, assess data availability for each mechanism, prioritize data needs, 102 

demonstrate how to leverage sparse data to make general predictions, and suggest how global 103 

coordination could facilitate these efforts. By synthesizing this information in one framework, 104 

we aim to inspire the future research agenda needed to develop the full predictive potential of 105 

mechanistic models. Consistent with the Intergovernmental Panel on Climate Change (IPCC), 106 

we use ‘projection’ to define all descriptions of the future and reserve ‘forecast’ for the most 107 

likely projections. 108 

 109 

Crucial biological information 110 

In table 1, we identify six mechanisms that determine biological responses to climate change. 111 

Based on these six mechanisms, we assess data availability for four well-studied species (Fig. 3). 112 

We find that although information on the six key mechanisms partly exists for species with high 113 

economic value, it is incomplete for even the best-studied species and absent for the vast 114 

majority of Earth’s species. Consequently, the most realistic models usually rely on sparse data 115 

or data extrapolated from non-representative populations, environments, or species.  116 

We next describe each mechanism in further detail, highlighting key parameters and 117 

discussing challenges with measurement, uncertainty, and sensitivity. Here, uncertainty 118 

encompasses both limited knowledge and random outcomes. Sensitivity denotes how changes in 119 

a parameter value influence model outcomes. After describing these mechanisms, we 120 

recommend how to collect data efficiently and leverage imperfect data. 121 
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Physiology – Physiology mediates how climate conditions like temperature, growing degree-122 

days, water availability, and potential evapotranspiration influence survival, growth, 123 

development, movement, and reproduction (23, 33, 34). Physiological parameters include critical 124 

thermal minima or maxima (the low and high temperatures at which organisms cease organized 125 

movement), evaporative water loss, photosynthetic rate, and metabolic rate. These individual 126 

physiological responses often are used to inform higher-level processes such as population 127 

persistence and range shifts (34). For example, the time a lizard remains active outside its 128 

burrow, where it is thermally neutral, can help predict its extinction risk under future climates 129 

(35).  130 

Physiologists measure parameters from natural observations or experiments in climate-131 

controlled chambers (33). However, using natural observations risks confounding responses to 132 

climate with other environmental factors (33). High-priority traits include responses to extreme 133 

heat or dryness, where survival often declines steeply. Uncertainty about physiological responses 134 

increases when we lack information on habitat heterogeneity, local adaptation, and physiological 135 

impacts on overall fitness. 136 

 137 

Demography, life history, and phenology – Demographic (birth, death, migration), life history 138 

(schedule of life cycle events), and phenological (timing of life history events) traits play critical 139 

roles in climate change responses (34, 36). Important parameters include birth and death rates, 140 

age at maturity, development rate, and reproductive investment. Parameters are best collected on 141 

marked individuals across representative populations spanning different densities and climates. 142 

However, these efforts require long-term, costly commitments. Changes in population 143 

abundances from short-term weather variation can provide proxies, but become unreliable over 144 
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time. Long-term vegetation plots can provide detailed demographic information for plants. 145 

Citizen scientists can collect data over large regions on traits like flowering time or breeding 146 

date, but concerns about data quality likely limit its usefulness for less easily measured traits like 147 

genetic variation.  148 

 Certain demographic parameters are especially important. For example, adult survival 149 

often affects population growth rate more than fecundity in long-lived species (37). Density-150 

dependence and generation length also strongly affect extinction risk from climate change (27). 151 

Additional uncertainty stems from local adaptation, responses to novel environments, 152 

mismatched phenology, community shifts, and interactions with non-climate stressors (21, 38, 153 

39).  154 

 155 

Evolutionary potential and local adaptation – Assaying genetic variation is crucial for 156 

predicting future responses (32, 40) because it could allow populations to adapt to climate 157 

change in situ. Unfortunately, scientists seldom know if, or how fast, populations can evolve 158 

climate-sensitive traits (38). Moreover, species usually comprise many locally adapted 159 

populations that each respond differently to climate change (4). Species might not shift their 160 

ranges with climate change if locally adapted populations become isolated and cannot colonize 161 

new habitats (4). Alternatively, individuals dispersing from locally adapted populations might 162 

track optimal climates across landscapes, and thus not need to adapt locally (Fig. 2) (17).  163 

 The breeder’s and Price equations can be used to predict responses to natural selection 164 

based on selection strength and genetic (co)variances (41). Genetic (co)variances are commonly 165 

measured through controlled breeding experiments or pedigrees. However, these estimates can 166 

become unreliable over long timescales or in novel environments if selection regimes or adaptive 167 
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potential change (42). Also, genetic (co)variances often vary among populations and 168 

environments, thus requiring broad sampling and careful sensitivity analyses. Other approaches 169 

involve tracking evolution using long-term observations, reconstructing evolution from layered 170 

propagule banks, or applying experimental evolution (43, 44). For instance, comparing Brassica 171 

rapa plants grown from seeds collected before and after a drought revealed rapid evolution of 172 

flowering timing (44). Past local adaptations to spatial climatic gradients are easier to assess. 173 

However, these patterns suggest past adaptive potential, not future evolutionary rates (38). By 174 

scanning entire genomes, next-generation sequencing offers a promising tool to uncover fine-175 

scale evolutionary diversification (45), and declining genomic costs could rapidly expand our 176 

limited knowledge of adaptive potential. Other frequently applied approaches include common 177 

garden experiments, natural transplants, and observations of phenotypic variation (Table 1).  178 

 Adaptive potential and population differentiation represent high-priority parameters 179 

because ignoring them contributes high levels of uncertainty (18, 32, 38, 44). For example, the 180 

Quino checkerspot butterfly was expected to become extinct from climate change, but it persists 181 

after adapting to live on a new host plant (46). Given limited genetic and evolutionary 182 

information, we often will need to generalize adaptive rates across species based on 183 

characteristics such as generation time, genetic isolation, phenotypic variation, and phylogenetic 184 

position. Fortunately, even coarse estimates of maximum adaptive rate compared to climate 185 

change suggest tipping points, where minor changes in climate initiate major biological 186 

disruptions and thus represent targets for facilitating adaptation in threatened populations (47).  187 

 188 

Species interactions – Species interactions often underlie unexpected responses to climate 189 

change (16, 21), and most extinctions attributed to climate change to date have involved altered 190 
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species interactions (48). Surprises occur when specialist interactions like mutualism constrain 191 

species’ responses (49), phenological mismatches alter species interactions (39), or top 192 

consumers propagate climate change effects throughout food webs (14). For instance, high 193 

temperatures along the Pacific Coast exacerbated predation by sea stars on mussels, which 194 

caused local extirpations (50). Yet, few models account for species interactions explicitly, 195 

instead assuming that each species responds independently to climate change (12, 21) (Fig. 1).  196 

 High-quality information on species interactions requires well-resolved information 197 

across interacting species, interaction types and strengths, spatiotemporal variation, and 198 

phenology. Unfortunately, such detailed information is usually missing. One approach to 199 

overcome this deficit is to analyze important subsets of strongly interacting species (21). Less 200 

robust alternatives include estimating trophic position using isotopes, understanding competition 201 

via diet breadth or species co-occurrence patterns, extrapolating from correlations between body 202 

size and trophic level, or discerning species co-occurrence patterns from meta-genomics. High-203 

priority parameters include those characterizing specialist interactions, top-down food web 204 

interactions, and timing mismatches among interacting species. High uncertainty arises from 205 

changes in species interactions themselves (e.g., shifts from competition to facilitation) and 206 

complex indirect effects that propagate through food webs (15). Additional uncertainties arise 207 

from species’ differential abilities to track climate change in space, creating previously unseen 208 

communities as coevolved interactions disappear and novel interactions form (16).  209 

 210 

Dispersal, colonization, and range dynamics – To persist, species often must track suitable 211 

climates into new regions through dispersal, colonization, and subsequent range shifts (51, 52). 212 

Most models unrealistically assume that all organisms disperse comparably and across any 213 
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landscape (Fig. 1) (31). In reality, dispersal depends on the interplay between individual 214 

behavior, fitness, habitat quality, and landscape configuration. Range shifts are particularly 215 

sensitive to dynamics at range boundaries where low abundances challenge accurate estimation 216 

(53).  217 

 Global positioning system units can record fine-scaled individual movement, but are 218 

costly and unsuitable for many small organisms. Passive integrated transponders, acoustic tags, 219 

and telemetry devices track smaller individuals at lower cost, but require strategically placed 220 

recorders. Neutral genetic variation across landscapes can indicate movement patterns, but 221 

demographic history can confound these estimates. Citizen science sometimes enables cost-222 

effective, coordinated, and large-scale data collection, assuming adequate quality control. 223 

Dispersal distances also can be inferred from proxies (e.g., body-size-dispersal relationships in 224 

animals (51) and growth form, seed mass, and vegetation type in plants (54)) until better 225 

estimates become available. Long-distance dispersal and fitness at range edges are high priority 226 

parameters because they introduce high uncertainty in model outcomes (31), yet are difficult to 227 

measure.  228 

 229 

Environmental responses – Responses to climate change depend on species-specific sensitivities 230 

and exposures to climate and habitat variation at relevant spatiotemporal scales. For instance, 231 

butterflies and moths responded idiosyncratically to different climate variables, which accurately 232 

predicted their observed responses to climate change (55). Researchers must carefully identify 233 

which specific climate components actually affect species. Many organisms respond not to 234 

average annual temperature or precipitation, but rather to temperature thresholds, season length, 235 

humidity, potential evapotranspiration, or extreme events like droughts. Species also differ in the 236 
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relevant spatiotemporal scales of environmental variation. Researchers should evaluate the 237 

environment through the eyes of the organism. The scales relevant to focal organisms often are 238 

meters and minutes rather than the measurements in kilometers and months typically available. 239 

Despite the increasing availability of fine-scaled information, most predictions are still made at 240 

coarse scales, which can substantially reduce predictive accuracy (56). Hierarchical sampling can 241 

maximize information content by combining large-scale sampling with targeted fine-scale 242 

measurements that capture relevant gradients. Species characteristics like body size or generation 243 

length also can provide proxies for missing data on species’ environmental responses.  244 

In addition, we need to integrate predictions of climate change with other human 245 

disturbances, including land use, pollution, invasive species, and harvesting, to gauge the full 246 

extent of future environmental change. Improving predictions of these disturbances and 247 

downscaling data to relevant ecological resolutions is critical for reducing future uncertainty. 248 

 249 

Interacting mechanisms – Each mechanism potentially interacts with many others. Specifically, 250 

climate responses depend proximately on dispersal and demography; demography in turn 251 

depends on physiology, species interactions, and environments; and each trait can evolve. For 252 

example, great tit birds in the Netherlands do not lay eggs earlier in warmer springs (involving 253 

demography, phenology, and environmental responses), while their caterpillar prey (species 254 

interaction) emerge earlier. This phenological mismatch between birds and their prey decreases 255 

nestling fitness (demography) (39). Yet, great tits from the United Kingdom do breed earlier in 256 

warmer springs, suggesting population genetic differentiation (57). A challenge is to integrate 257 

multiple interacting mechanisms without unnecessarily increasing model complexity (Fig. 2).  258 

 259 
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A practical way forward  260 

We recognize that the complexity of natural systems will add uncertainty even to the best-261 

parameterized and most realistic models (58). Collecting the relevant information and developing 262 

realistic biological models will require substantial investment in time and resources. Despite 263 

these challenges, we believe that collecting mechanistic data will jointly enhance our 264 

fundamental understanding of the biological processes that underlie climate responses and 265 

contribute to more accurate, longer-term projections that facilitate more effective conservation. 266 

Mechanistic models might not make accurate predictions initially, but learning from those 267 

failures provides the insights that ultimately improve projections. Predictive science advances 268 

most quickly via iterative prediction-failure-improvement cycles, and mechanistically grounded 269 

models often quicken the pace of these advances (8, 9, 24). Even small gains in understanding 270 

can improve future models by indicating critical missing information, highlighting key 271 

uncertainties, suggesting general trait-based predictions for non-modeled organisms, and 272 

delimiting the best options for retaining biodiversity under a range of future policy scenarios.  273 

Given limited time and resources, however, we need to develop strategies that leverage 274 

existing data and target essential information. Toward this end, we advocate for an adaptive 275 

modeling scheme that facilitates cost-effective model development and data collection (Fig. 4). 276 

The process of model testing and revision – steps rarely taken today, but facilitated by a more 277 

systematic approach – can reveal data of particular importance for improving predictions. 278 

Researchers first parameterize models with available data. In Table 1, we demonstrate how to 279 

tailor data collection efforts to system-specific constraints by listing ideal methods along with 280 

more easily collected proxies. Researchers then use independently collected variables from 281 

monitoring efforts to test outcomes and fit uncertain relationships. Sensitivity analyses identify 282 
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the most important parameters to collect, ensuring that resources go toward producing the 283 

greatest gains in accuracy. Based on these analyses, researchers can collect improved or new 284 

parameter estimates and revise the model through successive iterations of the approach. 285 

Crucially, results from multiple independent models should be combined because ensemble 286 

forecasts often prove more accurate (9, 59). Researchers also need to articulate clearly how 287 

uncertainty in parameter estimates and model choice propagates at each modelling step. We 288 

recommend adopting the IPCC’s standards for classifying model confidence and probabilistic 289 

uncertainty.  290 

Several approaches are available to extend projections from a few carefully studied 291 

species to many unstudied ones. We often possess extensive information spread across many 292 

species, but which is incomplete for any particular species. Emerging phylogenetic and trait-293 

based approaches could fill these data gaps. Trait-based approaches use trait correlations (e.g., 294 

between adult survival and fecundity) to predict missing parameters for species (51). Researchers 295 

also can simulate the climate responses of virtual species with realistic combinations of traits. 296 

For example, this virtual approach predicted that 30% of terrestrial mammals might not keep 297 

pace with climate change (60). Minimally, these efforts provide qualitative insights about which 298 

types of species are most vulnerable to climate change and therefore should be targeted for 299 

future, in-depth study (27). Another cost-effective strategy is to prioritize research on species 300 

with both high climate sensitivity and disproportionately large impacts on ecosystems. These so-301 

called biotic multipliers, often top predators and other keystone species, amplify small changes 302 

in climate to produce large ecological effects (14) such that their future dynamics drive overall 303 

ecosystem changes (15).  304 
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Conservation sometimes focuses on overall biodiversity rather than focal species. 305 

Estimates from subsets of species might be extrapolated cautiously to overall biodiversity, 306 

assuming suitable representation across taxonomic and phylogenetic diversity. However, trait-307 

based approaches might more efficiently suggest species with vulnerable trait combinations or 308 

that amplify community-wide impacts of climate change. For example, focusing on top 309 

consumers and other keystone species can indicate how their responses reverberate through 310 

entire food webs (14), thus further extending the value of single-species forecasts.  311 

Lastly, hybrid correlative-mechanistic approaches offer a pragmatic, initial approach to 312 

improving predictions by adding key mechanisms to simple models. For example, adjusting 313 

predicted ranges from correlative models with species-specific dispersal abilities (61) or 314 

interacting species’ ranges (49) can add realism and improve predictions. Given the simplicity of 315 

most current approaches (Fig. 1), even minimally more realistic models might improve 316 

projections until more complicated models can be developed (19, 24).   317 

 318 

Global coordination 319 

Global coordination will be critical at all stages, including defining projection goals, developing 320 

better models, collating and incorporating existing data, determining which additional data might 321 

improve forecasts, collecting new data, monitoring biodiversity changes, and organizing and 322 

maintaining data. Researchers and policymakers first must agree on the nature of the projection 323 

itself, including the accuracy, coverage, and time horizon of forecasts. A global clearinghouse 324 

would be useful to organize trait data, standardize terminology (e.g., dispersal vs. migration), and 325 

monitor climate responses.  326 
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It would also be useful to form regional working groups with local experts. Regional 327 

working groups would define representative ecosystems and climatic and environmental 328 

gradients in their region, while taking advantage of existing data and long-term monitoring sites. 329 

Groups would select species representing a broad range of regional trait diversity and build 330 

initial models with available data to estimate parameter sensitivity. To address immediate 331 

extinction threats, regional working groups might also characterize the climate change risk for 332 

threatened species on The International Union for Conservation of Nature Red List. Groups 333 

should then develop plans to refine sensitive parameters through targeted funding opportunities 334 

and citizen science. Collected biological information must be accessible, quality-checked, 335 

standardized, and maintained in databases such as Encyclopedia of Life’s TraitBank (traits) and 336 

Global Biodiversity Information Facility (species’ occurrences).  337 

The IPCC’s development of climate change predictions provides a template for how to 338 

achieve comparable progress in biodiversity projections. The IPCC’s biodiversity analogue, the 339 

Intergovernmental Platform on Biodiversity and Ecosystem Services, can also help coordinate 340 

this effort. Already the Group on Earth Observations – Biodiversity Observation Network is 341 

developing a list of Essential Biodiversity Variables (EBVs) for monitoring global biodiversity 342 

(30), and are working to address monitoring gaps (24). Despite some overlap between the 343 

modeling parameters outlined here and EBVs, the two collection schemes differ given divergent 344 

objectives. The EBVs monitor changes in biodiversity and provide variables for initializing and 345 

testing mechanistic predictions. Mechanistic models, however, also require parameters governing 346 

key processes, which often mandate more detailed observations or experiments than monitoring 347 

programs currently entail.  348 

   349 
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Combining predictive modeling with robust scenario analysis 350 

Collecting the data necessary to inform mechanistic biological models presents an enormous 351 

challenge given the vast diversity of life, its complexity, and our inadequate knowledge about it. 352 

This inherent complexity and stochasticity limits the accuracy of biological predictions for policy 353 

and management (58, 62), especially over long forecast horizons (9). We must accept that even 354 

the best-informed predictions could fail for a variety of unanticipated reasons.  355 

An alternative approach to planning for climate change develops conservation strategies 356 

robust to a broad range of future scenarios (63), thus insuring against inevitable surprises. For 357 

example, applying this ‘robust scenario’ approach might include maintaining dispersal corridors, 358 

preserving existing natural habitat and genetic diversity, and facilitating monitoring and flexible, 359 

adaptive management (58, 64). This strategy broadly protects biodiversity and depends less on 360 

accurate predictions. However, practical considerations will often limit which options are 361 

feasible, especially when management options for one species trade off against another.  362 

The two approaches are not mutually exclusive, and we believe that they work best in 363 

tandem. Mechanistic approaches likely will improve predictions at intermediate time horizons, 364 

e.g., 25-50 years, when current environmental correlations break down, and correlative 365 

approaches become less accurate (9). Beyond this timeframe, even the best mechanistic models 366 

become uncertain as key parameters can shift and uncertainty propagates. Yet, predictive models 367 

are still needed to delimit plausible expectations, place bounds on uncertainty, and direct limited 368 

resources toward strategies that target the most threatened regions and species (28, 58). Hence, a 369 

tandem approach builds general insights from key, representative species while preserving 370 

flexible options that work when models fail. 371 

 372 
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Conclusions 373 

Analogously, climate scientists in 1975 acknowledged their inability to predict climate 374 

accurately and highlighted the many challenges to reaching this objective (65). Despite these 375 

challenges, they outlined an ambitious long-term research program aimed at understanding key 376 

mechanisms governing climate change and collecting key pieces of missing information. This 377 

program ultimately produced the improvements in forecasting weather and climate change that 378 

society benefits from today. We believe that biology can and must do the same.  379 

Here, we advocate for a renewed global focus on targeting the natural history information 380 

needed to predict the future of biodiversity. Such efforts would more than compensate for their 381 

cost by improving our ability to understand, anticipate, and thereby prevent biodiversity loss and 382 

damage to ecosystems from climate change as well as other disturbances. Ultimately, 383 

understanding how nature works will provide innumerable benefits for long-term sustainability 384 

and human wellbeing. 385 

 386 

 387 

  388 



Page 18 

 

References and Notes: 389 

 390 

1. M. Kearney, W. P. Porter, C. Williams, S. Ritchie, A. A. Hoffmann, Integrating 391 

biophysical models and evolutionary theory to predict climatic impacts on species’ 392 

ranges: the dengue mosquito Aedes aegypti in Australia. Funct. Ecol. 23, 528 (2009). 393 

2. D. Murray-Rust et al., Combining agent functional types, capitals and services to model 394 

land use dynamics. Environmental Modelling & Software 59, 187 (2014). 395 

3. M. Kearney et al., Modelling species distributions without using species distributions: the 396 

cane toad in Australia under current and future climates. Ecography 31, 423 (2008). 397 

4. S. L. Pelini, J. A. Keppel, A. E. Kelley, J. J. Hellmann, Adaptation to host plants may 398 

prevent rapid insect responses to climate change. Glob Change Biol 16, 2923 (2010). 399 

5. S. Jenouvrier et al., Demographic models and IPCC climate projections predict the 400 

decline of an emperor penguin population. Proc. Natl. Acad. Sci. USA 106, 1844 (2009). 401 

6. G. Bocedi et al., RangeShifter: a platform for modelling spatial eco-evolutionary 402 

dynamics and species' responses to environmental changes. Method Ecol Evol 5, 388 403 

(2014). 404 

7. J. Settele et al., in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Fifth 405 

Assessment Report of the Intergovernmental Panel of Climate Change, C. B. Field et al., 406 

Eds. (Cambridge University Press, New York, 2014),  pp. 1-153. 407 

8. N. Mouquet et al., Predictive ecology in a changing world. J. Appl. Ecol. 52, 1293 408 

(2015). 409 



Page 19 

 

9. O. L. Petchey et al., The ecological forecast horizon, and examples of its uses and 410 

determinants. Ecol. Lett. 18, 597 (2015). 411 

10. M. C. Urban, Accelerating extinction risk from climate change. Science 348, 571 (2015). 412 

11. A. L. Angert et al., Do species' traits predict recent shifts at expanding range edges? Ecol. 413 

Lett. 14, 677 (2011). 414 

12. A. J. Davis, L. S. Jenkinson, J. H. Lawton, B. Shorrocks, S. Wood, Making mistakes 415 

when predicting shifts in species range in response to global warming. Nature 391, 783 416 

(1998). 417 

13. S. D. Veloz et al., No-analog climates and shifting realized niches during the late 418 

quaternary. Glob Change Biol 18, 1698 (2012). 419 

14. P. L. Zarnetske, D. K. Skelly, M. C. Urban, Biotic multipliers of climate change. Science 420 

336, 1516 (2012). 421 

15. E. Post, Ecology of climate change: the importance of biotic interactions.  (Princeton UP, 422 

Princeton, 2013). 423 

16. M. C. Urban, J. J. Tewksbury, K. S. Sheldon, On a collision course: competition and 424 

dispersal differences create no-analogue communities and cause extinctions during 425 

climate change. Proc. R. Soc. Lond. B. 279, 2072 (2012). 426 

17. J. Norberg, M. C. Urban, M. Vellend, C. A. Klausmeier, N. Loeuille, Eco-evolutionary 427 

responses of biodiversity to climate change. Nat Clim Change 2, 747 (2012). 428 

18. G. Bocedi et al., Effects of local adaptation and interspecific competition on species’ 429 

responses to climate change. Ann N Y Acad Sci 1297, 83 (2013). 430 



Page 20 

 

19. D. Zurell et al., Benchmarking novel approaches for modelling species range dynamics. 431 

Glob Change Biol, doi: 10.1111/gcb.13251 (2016). 432 

20. J. W. Williams, S. T. Jackson, J. E. Kutzbach, Projected distributions of novel and 433 

disappearing climates by 2100 AD. Proc. Natl. Acad. Sci. USA 104, 5738 (2007). 434 

21. S. E. Gilman, M. C. Urban, J. Tewksbury, G. W. Gilchrist, R. D. Holt, A framework for 435 

community interactions under climate change. Trends Ecol. Evol. 25, 325 (2010). 436 

22. D. Purves et al., Ecosystems: time to model all life on earth. Nature 493, 295 (2013). 437 

23. M. Kearney, W. Porter, Mechanistic niche modelling: combining physiological and 438 

spatial data to predict species’ ranges. Ecol. Lett. 12, 334 (2009). 439 

24. S. M. McMahon et al., Improving assessment and modelling of climate change impacts 440 

on global terrestrial biodiversity. Trends Ecol. Evol. 26, 249 (2011). 441 

25. J. Pagel, F. M. Schurr, Forecasting species ranges by statistical estimation of ecological 442 

niches and spatial population dynamics. Global Ecol. Biogeography 21, 293 (2012). 443 

26. H. R. Pulliam, On the relationship between niche and distribution. Ecol. Lett. 3, 349 444 

(2000). 445 

27. R. G. Pearson et al., Life history and spatial traits predict extinction risk due to climate 446 

change. Nat Clim Change 4, 217 (2014). 447 

28. A. Singer et al., Community dynamics under environmental change: How can next 448 

generation mechanistic models improve projections of species distributions? Ecol Model,  449 

(2015). 450 



Page 21 

 

29. L. B. Buckley et al., Contrasting correlative and mechanistic models of species ranges: 451 

putting concepts into practice. Ecol. Lett. 13, 1041 (2010). 452 

30. H. M. Pereira et al., Essential biodiversity variables. Science 339, 277 (2013). 453 

31. M. C. Urban, P. L. Zarnetske, D. K. Skelly, Moving forward: Dispersal and species 454 

interactions determine biotic responses to climate change. Ann N Y Acad Sci 1297, 44 455 

(2013). 456 

32. A. A. Hoffmann, C. M. Sgro, Climate change and evolutionary adaptation. Nature 470, 457 

479 (2011). 458 

33. M. J. Angilletta, Thermal adaptation: a theoretical and empirical synthesis.  (Oxford UP, 459 

Oxford, 2009). 460 

34. L. Crozier, G. Dwyer, Combining population-dynamic and ecophysiological models to 461 

predict climate-induced insect range shifts. Am. Nat. 167, 853 (2006). 462 

35. B. Sinervo et al., Erosion of lizard diversity by climate change and altered thermal 463 

niches. Science 328, 894 (May 14, 2010, 2010). 464 

36. D. A. Keith et al., Predicting extinction risks under climate change: coupling stochastic 465 

population models with dynamic bioclimatic habitat models. Biology Letters 4, 560 466 

(2008). 467 

37. B.-E. Sæther, Ø. Bakke, Avian life history variation and contribution of demographic 468 

traits to the population growth rate. Ecology 81, 642 (2000). 469 

38. J. Merilä, A. P. Hendry, Climate change, adaptation, and phenotypic plasticity: the 470 

problem and the evidence. Evol Appl,  (2014). 471 



Page 22 

 

39. M. E. Visser, A. J. van Noordwijk, J. M. Tinbergen, C. M. Lessells, Warmer springs lead 472 

to mistimed reproduction in Great Tits (Parus major). Proc. R. Soc. Lond. B. 265, 1867 473 

(1998). 474 

40. S. P. Carroll et al., Applying evolutionary biology to address global challenges. Science,  475 

(September 11, 2014, 2014). 476 

41. M. B. Morrissey et al., The prediction of adaptive evolution. Evolution 66, 2399 (2012). 477 

42. J. P. Reeve, Predicting long-term response to selection. Genet. Res. 75, 83 (2000). 478 

43. W. E. Bradshaw, C. M. Holzapfel, Evolutionary response to rapid climate change. 479 

Science 312, 1477 (2006). 480 

44. S. J. Franks, S. Sim, A. E. Weis, Rapid evolution of flowering time by an annual plant in 481 

response to a climate fluctuation. Proc. Natl. Acad. Sci. USA 104, 1278 (2007). 482 

45. J. Buckley, R. K. Butlin, J. R. Bridle, Evidence for evolutionary change associated with 483 

the recent range expansion of the British butterfly, Aricia agestis, in response to climate 484 

change. Mol. Ecol. 21, 267 (2012). 485 

46. C. Parmesan, in Butterfly Conservation 7th International Symposium. (Southampton 486 

University, 2014). 487 

47. C. A. Botero, F. J. Weissing, J. Wright, D. R. Rubenstein, Evolutionary tipping points in 488 

the capacity to adapt to environmental change. Proc. Natl. Acad. Sci. USA 112, 184 489 

(2015). 490 

48. A. E. Cahill et al., How does climate change cause extinction? Proc. R. Soc. Lond. B. 491 

280, 20121890 (2012). 492 



Page 23 

 

49. O. Schweiger, J. Settele, O. Kudrna, S. Klotz, I. Kuhn, Climate change can cause spatial 493 

mismatch of trophically interacting species. Ecology 89, 3472 (2008). 494 

50. C. D. G. Harley, Climate Change, Keystone Predation, and Biodiversity Loss. Science 495 

334, 1124 (November 25, 2011, 2011). 496 

51. C. A. Schloss, T. A. Nunez, J. J. Lawler, Dispersal will limit ability of mammals to track 497 

climate change in the Western Hemisphere. Proc. Natl. Acad. Sci. U. S. A. 109, 8606 498 

(2012). 499 

52. B. J. Anderson et al., Dynamics of range margins for metapopulations under climate 500 

change. Proc. R. Soc. Lond. B.,  (2009). 501 

53. J. P. Sexton, P. J. McIntyre, A. L. Angert, K. J. Rice, Evolution and ecology of species 502 

range limits. Annu. Rev. Ecol. Syst. 40, 415 (2009). 503 

54. F. J. Thomson et al., Chasing the unknown: predicting seed dispersal mechanisms from 504 

plant traits. J. Ecol. 98, 1310 (2010). 505 

55. G. Palmer et al., Individualistic sensitivities and exposure to climate change explain 506 

variation in species’ distribution and abundance changes. Science Advances 1,  (2015). 507 

56. R. Early, D. F. Sax, Analysis of climate paths reveals potential limitations on species 508 

range shifts. Ecol. Lett. 14, 1125 (2011). 509 

57. A. Charmantier et al., Adaptive phenotypic plasticity in response to climate change in a 510 

wild bird population. Science 320, 800 (2008). 511 

58. D. E. Schindler, R. Hilborn, Prediction, precaution, and policy under global change. 512 

Science 347, 953 (2015). 513 



Page 24 

 

59. M. B. Araújo, M. New, Ensemble forecasting of species distributions. Trends Ecol. Evol. 514 

22, 42 (2007). 515 

60. L. Santini et al., A trait-based approach for predicting species responses to environmental 516 

change from sparse data: how well might terrestrial mammals track climate change? Glob 517 

Change Biol, doi:10.1111/gcb.13271 (2016). 518 

61. S. Dullinger et al., Extinction debt of high-mountain plants under twenty-first-century 519 

climate change. Nat Clim Change 2, 619 (2012). 520 

62. B. Beckage, L. J. Gross, S. Kauffman, The limits to prediction in ecological systems. 521 

Ecosphere 2, 1 (2011). 522 

63. R. J. Lempert, M. E. Schlesinger, Robust strategies for abating climate change. Climatic 523 

Change 45, 387 (2000). 524 

64. B. Rayfield, D. Pelletier, M. Dumitru, J. A. Cardille, A. Gonzalez, Multipurpose habitat 525 

networks for short-range and long-range connectivity: a new method combining graph 526 

and circuit connectivity. Method Ecol Evol 7, 222 (2016). 527 

65. U. S. N. A. o. Sciences, U. S. C. f. t. G. A. R. P. Panel on Climatic Variation, National 528 

Research Council, Ed. (National Academy of Sciences, Washington, D.C., 1975),  pp. 529 

239. 530 

 531 

Acknowledgments:  532 

This paper originates from the ‘Ecological Interactions and Range Evolution Under 533 

Environmental Change’ and ‘RangeShifter’ working groups, supported by the Synthesis Centre 534 

of the German Centre for Integrative Biodiversity Research (DFG-FZT-118), DIVERSITAS, and 535 



Page 25 

 

its core projects bioDISCOVERY and biogenesis and individual funding sources: AG (Canada 536 

Research Chair, NSERC, and QCBS); RDH (University of Florida Foundation); LDM (KU 537 

Leuven Research Fund PF/2010/07, ERA-Net BiodivERsA TIPPINGPOND and Belspo IAP 538 

SPEEDY); JBM and GP (EU-BON-FP7-308454); JP (KU Leuven Research Fund); and MU 539 

(NSF DEB-1119877, PLR-1417754, McDonnell Foundation). 540 

 541 

Supplementary Materials: 542 

Fig. S1 543 

Table S1  544 



Page 26 

 

Fig. 1: Most models of biological responses to climate change omit important biological 545 

mechanisms. Only 23% of reviewed studies (10) included a biological mechanism. Models that 546 

included one mechanism usually incorporated others, but no model included all six mechanisms. 547 

All models included environmental variation, generally via correlations, but usually did not 548 

explicitly incorporate species’ sensitivities to environmental variation at relevant spatiotemporal 549 

scales. 550 

 551 

Fig. 2: A generic model integrates six biological mechanisms to predict climate change 552 

responses. The six mechanisms A) are matched by color to their representation in equations (B) 553 

simplified from (17) (see Table S1 for symbol descriptions). Results suggest how dispersal (blue-554 

purple), adaptive evolution (yellow), and their combination (red-orange) determine the match 555 

between community-wide thermal traits and changing local temperatures (C). Temperatures 556 

increase before stabilizing at the white dotted line. Black indicates no trait change. In cold 557 

regions, warm-adapted species disperse into newly suitable, warmer habitats. In warm regions, 558 

evolution dominates because no species with higher thermal tolerances exist. D) shows 559 

equilibrium abundances of five hypothetical species (each indicated by differently colored lines) 560 

following climate change.  561 

 562 

Fig. 3: Data gaps exist even for well-studied species. We rated data quality for some of the 563 

best-studied species in climate change research: a) fence lizard, b) sockeye salmon, c) speckled 564 

wood butterfly, and d) European beech. Data quality: high = near-complete information, medium 565 

= information available but missing critical components, low = information mostly absent. We 566 
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evaluated data availability by examining models of climate responses, reviewing species-specific 567 

literature, and contacting experts. 568 

 569 

Fig. 4: Biological models improve iteratively through time by applying an adaptive 570 

modeling scheme. Steps include parameterizing models using available data, estimating 571 

parameter sensitivities, targeting better measurements for sensitive parameters, validating 572 

projections with observations, and iteratively refining and updating the model to improve 573 

predictive accuracy and precision through time.  574 
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Figure 3 581 
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Figure 4 585 
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Table 1. Biological Parameters, Collection Methods, Proxies, Priorities, and Key Uncertainties 588 

We list six classes of biological modeling parameters, example parameters, methods to collect them, possible proxy relationships that 589 

could fill in gaps for poorly studied taxa, priority parameters, and key remaining uncertainties.  590 

 591 

Biological 

mechanisms 

Example parameters Alternative and complementary  

methods* 

Proxy 

relationships 

Priority 
parameters 

Key uncertainties 

1. Physiology Thermal, desiccation, 

and chemical 

tolerances; 

environment-

dependent  

performance and 

metabolic rate; 

photosynthesis 

1. Experimental understanding of 

physiological responses to environmental 

conditions in nature or laboratory 

2. Observed correlations between 

physiological responses and environmental 

conditions in time or space 

3. Trait-based proxies (e.g., body mass for 

metabolism) 

 

1. Body mass 

correlates 

strongly with 

energy 

requirements 

2. Water and 

light 

requirements in 

vegetation 

models 

 

Physiological 
responses in 
extreme 
environments 
(e.g., 
performance 
under hot or 
dry 
conditions) 
 
 

How does behavior 
modify physiology? 
 
To what degree do 
organisms evolve 
different 
physiological 
responses across a 
range? 
 
How do 
physiological 
sensitivities of 
different 
performance traits 
scale to whole-
organism fitness? 

2. 

Demography, 

life history, 

and 

phenology 

Birth and death rates, 

including age or stage 

structure, age of 

maturity, development 

and growth rates, 

environmental 

dependence, timing, 

1. Long-term mark recapture parentage 

studies or long-term demographic data 

from vegetation plots  

2. Experimental studies of environment-

dependent birth and death rates in nature 

(best) or in the laboratory 

1. Demographic 

parameters 

correlate with 

life history traits 

(e.g., slow-fast 

continuum) and 

niche 

specialization  

vital rates 
most 
influencing 
population 
growth rates – 
e.g. adult 
survival for 
long-lived 
organisms, 

To what degree do 
organisms evolve 
different life 
histories across a 
range? 
 
Does rapid 
adaptation to 
climate change 
play a role? 
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and individual 

variability 

 

3. Population growth rates from observed 

abundance data 

 

 generation 
length, 
mismatches in 
timing of life 
history events 

 
When does 
phenology depend 
on climate versus 
non-climate 
triggers (e.g., day 
length)? 
 
How do other 
environmental 
changes (e.g., 
habitat 
degradation) 
interact with 
climate responses? 
 

3. 

Evolutionary 

potential and 

selection 

 

 

 

 

 

 

 

Additive genetic trait 

(co)variance/heritability 

and additive genetic 

covariance between 

traits and fitness  

 

 

 

 

 

 

1. Quantitative genetic variation in key 

traits estimated from controlled breeding 

designs, populations with pedigrees, or 

from individuals raised under common 

conditions 

2. Experimental or correlational estimation 

of selection gradients 

3. Gene expression patterns for 

understanding functional trait variation 

under different environmental conditions 

4. Phenotypic variation within populations 

 

1. Evolutionary 

rates correlate 

negatively with 

generation 

length 

2. Genetic 

variation within 

populations 

positively 

correlated with 

population size 

3. Space-for-time 

substitutions 

Adaptive 
potential, 
local 
adaptation of 
climate-
sensitive 
parameters 
across 
species’ range 

To what degree is 
trait change 
determined by 
genetics versus 
environment? 
 
How well do short-
term 
measurements of 
adaptive 
mechanisms 
perform in the long 
run? 
 
How does local 
adaptation within a 
range alter species-
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Population 

differentiation 

Fitness differences 

among populations and 

environments, genetic 

variation among 

populations, 

phenotypic variation, 

including plasticity, 

among populations 

 

1. Reciprocal transplant and common 

garden experiments that reveal fitness and 

trait differences among populations in 

response to relevant environmental 

gradients 

2. Statistical search for variation in loci 

under selection  

3. Gene expression patterns for 

understanding functional trait variation 

under different environmental conditions 

4. Population genetics with neutral loci to 

understand population differentiation 

through barriers to gene flow 

5. Observation of phenotypic variation 

within and among populations  

 

 

 

1. Genetic 

variation among 

populations 

positively 

correlated with 

range size. 

 

 

level responses to 
climate change? 

4. Species 

interactions 

Interaction webs with 

spatiotemporal 

variation and 

phenology, interaction 

types and strengths, 

community module, 

diet or resource 

1. Experimental evaluation of species 

interaction strength and direction in nature 

(best) or laboratory 

2. Natural history observations of 

interactions 

1. Trophic level 

increases with 

body size 

2. Similar trophic 

levels shared by 

phylogenetically 

similar species  

Specialist 
interactions, 
sensitivity of 
top 
consumers, 
phenological 
mismatches 
between 

What happens as 
coevolved 
interactions 
disappear and new 
species 
interactions form? 
 
How sensitive are 
food webs to top-
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overlap, trophic 

position 

 

3. Isotope analysis to reveal trophic levels 

and food web links 

4. Statistical co-occurrence patterns (e.g., 

checkerboard patterns for competition) 

 

interacting 
species 

down versus 
bottom-up climate 
disturbances? 
 
To what degree can 
species adapt to 
novel species 
interactions? 

5. Dispersal, 

colonization, 

and range 

dynamics 

Dispersal behaviors, 

movement and 

settlement rules, inter-

individual variability, 

environment-, density-

and condition-

dependent dispersal, 

landscape permeability 

(e.g., least-cost path 

analysis) 

1. Satellite telemetry of moving organisms 

to reveal landscape movement tracks 

2. Mark-recapture and relocations to 

evaluate absolute movement 

3. Experiments (e.g., linked mesocosms) to 

understand movement  

4. Landscape genetics to reveal landscape 

connectivity among populations 

5. Historical reconstruction of movement 

patterns during expansion 

6. Incidence functions in metapopulations 

to determine population connectivity 

7. Citizen science to track organisms (e.g., 

tagged birds) 

 

1. Larger bodied 

animals disperse 

farther 

2. Smaller seeds 

travel farther 

3. Animal 

dispersed seeds 

travel farther 

4. Larger winged 

organisms 

disperse farther 

5. Pelagic animals 

disperse farther 

than benthic 

ones 

 

Long-distance 
dispersal, 
fitness at 
range 
boundaries 

How important is 
long-range 
dispersal for range 
dynamics? 
 
How does fitness 
vary across a 
range? 
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6. Responses 

to 

environmental 

variation 

Functional relationships 

between traits and 

environments, 

identification and 

quantification of key 

environmental 

gradients across 

species-relevant scales 

of space and time 

1. Experimental manipulation of key 

environments to understand functional 

responses 

2. Statistical analysis of environmental 

gradients and responses 

3. Characterization of environmental 

gradients at biologically relevant scales 

a. Surveys of environmental 

parameters conducted at relevant 

spatial and temporal scales  

b. Ground-truthed maps to be used 

in environmental gradient analyses 

c. Statistical interpolation of coarse 

map data  

1. Determining 

networks of co-

acting 

environmental 

variables 

2. Correlating 

easily collected 

GIS data to other 

factors such as 

resources 

Identifying 
key gradients, 
spatial scale-
dependence 
of 
environmental 
responses, 
dynamic 
change in 
gradients 

Are there general 
ways to predict the 
relevant scales that 
species will 
respond to 
environmental 
variation?  
 
What biological 
parameters are 
linked with the 
environmental 
factors and how? 
 
How are important 
environmental 
gradients changing 
through time? 

Note that each of these mechanisms likely interacts with other mechanisms.  592 

* We list methods in an illustrative descending order of data accuracy. The ordering of collection methods are considered illustrative 593 

only and will clearly change depending on the particular attributes of species and systems. The best methods however might not be 594 

easily implemented for some taxa, necessitating more practical methods, followed by sensitivity analysis. They will also change 595 

through time, for example, as emerging methods become less costly. In reality, the ideal approach for collecting data on a key process 596 

will involve joint use of more than one method. For example, for dispersal we might currently want to collect high quality telemetry 597 

data for the movement of a relatively small number of dispersers due to cost constraints while also obtaining population-level 598 
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estimates of dispersal through either landscape genetics or mark-release-recapture methods (or both). We encourage readers to tailor 599 

costs and benefits of the alternative and complementary approaches to their own system and adjust decisions for investment of 600 

resources appropriately.  601 

 602 


