19 research outputs found

    Seasonal patterns of fine root production and turnover in a mature rubber tree (Hevea brasiliensis Müll. Arg.) stand- differentiation with soil depth and implications for soil carbon stocks

    Get PDF
    Fine root dynamics is a main driver of soil carbon stocks, particularly in tropical forests, yet major uncertainties still surround estimates of fine root production and turnover. This lack of knowledge is largely due to the fact that studying root dynamics in situ, particularly deep in the soil, remains highly challenging. We explored the interactions between fine root dynamics, soil depth, and rainfall in mature rubber trees (Hevea brasiliensis Müll. Arg.) exposed to sub-optimal edaphic and climatic conditions. A root observation access well was installed in northern Thailand to monitor root dynamics along a 4.5 m deep soil profile. Image-based measurements of root elongation and lifespan of individual roots were carried out at monthly intervals over 3 years. Soil depth was found to have a significant effect on root turnover. Surprisingly, root turnover increased with soil depth and root half-life was 16, 6–8, and only 4 months at 0.5, 1.0, 2.5, and 3.0 m deep, respectively (with the exception of roots at 4.5 m which had a half-life similar to that found between depths of 1.0 and 2.5 m). Within the first two meters of the soil profile, the highest rates of root emergence occurred about 3 months after the onset of the rainy season, while deeper in the soil, root emergence was not linked to the rainfall pattern. Root emergence was limited during leaf flushing (between March and May), particularly within the first two meters of the profile. Between soil depths of 0.5 and 2.0 m, root mortality appeared independent of variations in root emergence, but below 2.0 m, peaks in root emergence and death were synchronized. Shallow parts of the root system were more responsive to rainfall than their deeper counterparts. Increased root emergence in deep soil toward the onset of the dry season could correspond to a drought acclimation mechanism, with the relative importance of deep water capture increasing once rainfall ceased. The considerable soil depth regularly explored by fine roots, even though significantly less than in surface layers in terms of root length density and biomass, will impact strongly the evaluation of soil carbon stocks

    A simple framework to analyze water constraints on seasonal transpiration in rubber tree (Hevea brasiliensis) plantations

    Get PDF
    Climate change and fast extension in climatically suboptimal areas threaten the sustainability of rubber tree cultivation. A simple framework based on reduction factors of potential transpiration was tested to evaluate the water constraints on seasonal transpiration in tropical sub-humid climates, according pedoclimatic conditions. We selected a representative, mature stand in a drought-prone area. Tree transpiration, evaporative demand and soil water availability were measured every day over 15 months. The results showed that basic relationships with evaporative demand, leaf area index and soil water availability were globally supported. However, the implementation of a regulation of transpiration at high evaporative demand whatever soil water availability was necessary to avoid large overestimates of transpiration. The details of regulation were confirmed by the analysis of canopy conductance response to vapor pressure deficit. The final objective of providing hierarchy between the main regulation factors of seasonal and annual transpiration was achieved. In the tested environmental conditions, the impact of atmospheric drought appeared larger importance than soil drought contrary to expectations. Our results support the interest in simple models to provide a first diagnosis of water constraints on transpiration with limited data, and to help decision making toward more sustainable rubber plantations

    Global transpiration data from sap flow measurements : the SAPFLUXNET database

    Get PDF
    Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land-atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The "sapfluxnetr" R package - designed to access, visualize, and process SAPFLUXNET data - is available from CRAN.Peer reviewe

    Latex Yield of <em>Hevea brasiliensis</em> Poorly Indicates Soil Drought

    No full text
    National audiencePredawn leaf water potential, sap flux density or tree transpiration and whole-tree hydraulic conductance are known indicators of soil drought on rubber tree (Hevea brasiliensis). However, these parameters are difficult to access for farmers, in contrast to latex yield which is recorded every day. Hence, the aim of this study was to evaluate the potential use of latex yield as indicator of soil drought in the marginal rainfall areas. The experiment was done during intermittent drought in the rainy season in a representative rubber plantation located in Buriram province, northeast Thailand. The results showed that while the relative transpiration declined by 66% for severe soil drought, the number of rubber sheets per hectare and per tapping decreased slightly by 18% and did not differ for mild drought. Other yield parameters per tapping such as fresh latex per tree or dry rubber content did not differ significantly despite tendencies between severe drought and well-watered period. Finally, the latex yield per tapping does not appear to be a sensitive indicator of soil drought

    Proceedings of the 2nd International Symposium on Horticulture in Europe

    No full text
    Predawn leaf water potential, sap flux density or tree transpiration and whole-tree hydraulic conductance are known indicators of soil drought on rubber tree (Hevea brasiliensis). However, these parameters are difficult to access for farmers, in contrast to latex yield which is recorded every day. Hence, the aim of this study was to evaluate the potential use of latex yield as indicator of soil drought in the marginal rainfall areas. The experiment was done during intermittent drought in the rainy season in a representative rubber plantation located in Buriram province, northeast Thailand. The results showed that while the relative transpiration declined by 66% for severe soil drought, the number of rubber sheets per hectare and per tapping decreased slightly by 18% and did not differ for mild drought. Other yield parameters per tapping such as fresh latex per tree or dry rubber content did not differ significantly despite tendencies between severe drought and well-watered period. Finally, the latex yield per tapping does not appear to be a sensitive indicator of soil drought

    Transient thermal dissipation method for xylem sap flow measurement : implementation with a single probe

    No full text
    International audienceComparisons of tree water relations between treatments, species and sites are facilitated by the use of simple and low-cost measurements of xylem sap flow rates. The transient thermal dissipation (TTD) method is a variant of the constant thermal dissipation (CTD) method of Granier. It has the advantages of limiting thermal interference and of saving electrical energy. Here, our concern was to test a new step towards simplicity and low cost: the applicability of the TTD method with a single probe, i.e., without a reference sensor, following a cycle of 10 min heating and 10 min cooling, and using the same thermal index and multi-species calibration previously assessed with a dual probe. First, the responses of the dual and single probes were compared in an artificial hydraulic column of sawdust in the laboratory over a complete range of flux densities, from 0.3 to 4.0 l dm(-2) h(-1). Second, diurnal kinetics were compared in a young tree with rapid changes in the sapwood reference temperature of up to 5 degrees C h(-1) for 5 consecutive days. With a relatively stable reference temperature, laboratory results showed that a single probe yielded the same temperature signal and thermal index as a dual probe for the full range of sap flux densities. Within the tree, the cooled temperature of the heated probe, linearly interpolated, proved to be an accurate indicator of the change in the reference temperature over time. Logically, the temperature signals and estimates of sap flux density with the single probe did not differ from the dual-sensor measurements when the cooled temperature was interpolated. Additionally, the responses of the thermal index, yielded in the hydraulic experiment with the sawdust column, fell within the variability of the multi-species calibration. This result supports the previous assessment of a non-species-specific calibration for the TTD method with diffuse porous media. In conclusion, our results showed that the TTD method can be directly applied with a single probe. Limitations and possible future progress are pointed out. This measurement system is probably the simplest technique currently available to measure xylem sap flow

    Transpiration, growth and latex production of a Hevea brasiliensis stand facing drought in northeast Thailand : the use of the WaNuLCAS model as an exploratory tool

    No full text
    International audienceIn order to get the benefit of the growing world demand for natural rubber, Hevea brasiliensis is increasingly planted in drought-prone areas, such as in the southern part of northeast Thailand. Modelling can be a useful approach in identifying key points of improvement for rubber tree cultivation in such waterlimited areas. The first objective of this study was to test the possibility of using the Water Nutrients and Light Capture in Agroforestry Systems (WaNuLCAS) model as an exploratory tool to simulate water use, growth and latex production in a pure stand on a daily basis. The second was to evaluate the relative accuracy of predictions with the current model version. Finally, the third aim of this study was to identify particular parameterisations that may be adapted to improve overall prediction quality. Model outputs were compared to measurements recorded in a mature rubber tree stand of RRIM 600 clones growing in the water-limited area of northeast Thailand. The period of analysis concerned seven months of full foliation, from May to November, including a severe drought spell. Whole-tree transpiration was estimated by xylem sap flow measurement from 11 trees. The results show that the model was able to simulate daily and seasonal change of soil water content, tree transpiration, girth increment and latex production within plausible ranges. However, under detailed scrutiny, the predictions show large inaccuracies compared to the observations: soil water content (determination coefficient (R2) = 0.461, relative root mean square error (RMSErel) = 35%), tree transpiration (R2 = 0.104, RMSErel = 94%), tree girth increment (R2 = 0.916, RMSErel = 208%) and latex production (R2 = 0.423, RMSErel = 169%). As soil water content was overestimated during the driest periods, no water stress was predicted and transpiration, growth and latex production were logically overestimated during such periods. However, tree transpiration was also largely overestimated in conditions of non-limiting soil water availability with high evaporative demand. Hence, two key points of parameterisation and improvement are identified for better simulation in our conditions: the soil water balance and particularly the ratio between water infiltration and run-off, and the regulation of transpiration under high evaporative demand. In conclusion, the WaNuLCAS model is usable as an exploratory model to simulate water use, growth and production for a pure rubber tree stand. However, in our conditions of much degraded soil and high evaporative demand, the modules of soil water balance and tree transpiration require particular parameterisations and improvement
    corecore