111 research outputs found

    Colouration in amphibians as a reflection of nutritional status : the case of tree frogs in Costa Rica

    Get PDF
    Colouration has been considered a cue for mating success in many species; ornaments in males often are related to carotenoid mobilization towards feathers and/or skin and can signal general health and nutrition status. However, there are several factors that can also link with status, such as physiological blood parameters and body condition, but there is not substantial evidence which supports the existence of these relationships and interactions in anurans. This study evaluated how body score and blood values interact with colouration in free-range Agalychnis callidryas and Agalychnis annae males. We found significant associations between body condition and plasmatic proteins and haematocrit, as well as between body condition and colour values from the chromaticity diagram. We also demonstrated that there is a significant relation between the glucose and plasmatic protein values that were reflected in the ventral colours of the animals, and haematocrit inversely affected most of those colour values. Significant differences were found between species as well as between populations of A. callidryas, suggesting that despite colour variation, there are also biochemical differences within animals from the same species located in different regions. These data provide information on underlying factors for colouration of male tree frogs in nature, provide insights about the dynamics of several nutrients in the amphibian model and how this could affect the reproductive output of the animals

    FeCycle: Attempting an iron biogeochemcial budget from a mesoscale SF 6 tracer experiment in unpertutbed low iron waters

    Get PDF
    An improved knowledge of iron biogeochemistry is needed to better understand key controls on the functioning of high-nitrate low-chlorophyll (HNLC) oceanic regions. Iron budgets for HNLC waters have been constructed using data from disparate sources ranging from laboratory algal cultures to ocean physics. In summer 2003 we conducted FeCycle, a 10-day mesoscale tracer release in HNLC waters SE of New Zealand, and measured concurrently all sources (with the exception of aerosol deposition) to, sinks of iron from, and rates of iron recycling within, the surface mixed layer. A pelagic iron budget (timescale of days) indicated that oceanic supply terms (lateral advection and vertical diffusion) were relatively small compared to the main sink (downward particulate export). Remote sensing and terrestrial monitoring reveal 13 dust or wildfire events in Australia, prior to and during FeCycle, one of which may have deposited iron at the study location. However, iron deposition rates cannot be derived from such observations, illustrating the difficulties in closing iron budgets without quantification of episodic atmospheric supply. Despite the threefold uncertainties reported for rates of aerosol deposition (Duce et al., 1991), published atmospheric iron supply for the New Zealand region is ∼50-fold (i.e., 7-to 150-fold) greater than the oceanic iron supply measured in our budget, and thus was comparable (i.e., a third to threefold) to our estimates of downward export of particulate iron. During FeCycle, the fluxes due to short term (hours) biological iron uptake and regeneration were indicative of rapid recycling and were tenfold greater than for new iron (i.e. estimated atmospheric and measured oceanic supply), giving an "fe" ratio (uptake of new iron/ uptake of new + regenerated iron) of 0.17 (i.e., a range of 0.06 to 0.51 due to uncertainties on aerosol iron supply), and an "Fe" ratio (biogenic Fe export/uptake of new + regenerated iron) of 0.09 (i.e., 0.03 to 0.24)

    Seasonal Changes in Colour: A Comparison of Structural, Melanin- and Carotenoid-Based Plumage Colours

    Get PDF
    Plumage coloration is important for bird communication, most notably in sexual signalling. Colour is often considered a good quality indicator, and the expression of exaggerated colours may depend on individual condition during moult. After moult, plumage coloration has been deemed fixed due to the fact that feathers are dead structures. Still, many plumage colours change after moult, although whether this affects signalling has not been sufficiently assessed.) displaying various coloration types (melanin-, carotenoid-based and structural). Birds were caught regularly during three years to measure plumage reflectance. We used models of avian colour vision to derive two variables, one describing chromatic and the other achromatic variation over the year that can be compared in magnitude among different colour types. All studied plumage patches but one (yellow breast of the blue tit) showed significant chromatic changes over the year, although these were smaller than for a typical dynamic trait (bill colour). Overall, structural colours showed a reduction in relative reflectance at shorter wavelengths, carotenoid-based colours the opposite pattern, while no general pattern was found for melanin-based colours. Achromatic changes were also common, but there were no consistent patterns of change for the different types of colours.Changes of plumage coloration independent of moult are probably widespread; they should be perceivable by birds and have the potential to affect colour signalling

    Living with the Past: Nutritional Stress in Juvenile Males Has Immediate Effects on their Plumage Ornaments and on Adult Attractiveness in Zebra Finches

    Get PDF
    The environmental conditions individuals experience during early development are well known to have fundamental effects on a variety of fitness-relevant traits. Although it is evident that the earliest developmental stages have large effects on fitness, other developmental stages, such as the period when secondary sexual characters develop, might also exert a profound effect on fitness components. Here we show experimentally in male zebra finches, Taeniopygia guttata, that nutritional conditions during this later period have immediate effects on male plumage ornaments and on their attractiveness as adults. Males that had received high quality food during the second month of life, a period when secondary sexual characteristics develop, were significantly more attractive as adults in mate choice tests than siblings supplied with standard food during this period. Preferred males that had experienced better nutritional conditions had larger orange cheek patches when nutritional treatments ended than did unpreferred males. Sexual plumage ornaments of young males thus are honest indicators of nutritional conditions during this period. The mate choice tests with adult birds indicate that nutritional conditions during the period of song learning, brain and gonad development, and moult into adult plumage have persisting effects on male attractiveness. This suggests that the developmental period following nutritional dependence from the parents is just as important in affecting adult attractiveness as are much earlier developmental periods. These findings thus contribute to understanding the origin and consequences of environmentally determined fitness components

    Children’s experiences of participating in research: emotional moments together?

    Get PDF
    This paper reflects upon emotional moments in research with children and young people. In particular, we seek to contribute to the now-extensive literature on emotions in social scientific research practice by: (i) attempting to acknowledge the often-overlooked emotions experienced by children and young people whilst participating in research; (ii) highlighting the complex, multiperspectival nature of emotions in research. We suggest that these complexities can, simultaneously be problematic and an opportunity to celebrate the achievement of doing research together

    The SOLAS air-sea gas exchange experiment (SAGE) 2004

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 58 (2011): 753-763, doi:10.1016/j.dsr2.2010.10.015.The SOLAS air-sea gas exchange experiment (SAGE) was a multiple-objective study investigating gas-transfer processes and the influence of iron fertilisation on biologically driven gas exchange in high-nitrate low-silicic acid low-chlorophyll (HNLSiLC) Sub-Antarctic waters characteristic of the expansive Subpolar Zone of the southern oceans. This paper provides a general introduction and summary of the main experimental findings. The release site was selected from a pre-voyage desktop study of environmental parameters to be in the south-west Bounty Trough (46.5°S 172.5°E) to the south-east of New Zealand and the experiment conducted between mid-March and mid-April 2004. In common with other mesoscale iron addition experiments (FeAX’s), SAGE was designed as a Lagrangian study quantifying key biological and physical drivers influencing the air-sea gas exchange processes of CO2, DMS and other biogenic gases associated with an iron-induced phytoplankton bloom. A dual tracer SF6/3He release enabled quantification of both the lateral evolution of a labelled volume (patch) of ocean and the air-sea tracer exchange at the 10’s of km’s scale, in conjunction with the iron fertilisation. Estimates from the dual-tracer experiment found a quadratic dependency of the gas exchange coefficient on windspeed that is widely applicable and describes air-sea gas exchange in strong wind regimes. Within the patch, local and micrometeorological gas exchange process studies (100 m scale) and physical variables such as near-surface turbulence, temperature microstructure at the interface, wave properties, and wind speed were quantified to further assist the development of gas exchange models for high-wind environments. There was a significant increase in the photosynthetic competence (Fv/Fm) of resident phytoplankton within the first day following iron addition, but in contrast to other FeAX’s, rates of net primary production and column-integrated chlorophyll a concentrations had only doubled relative to the unfertilised surrounding waters by the end of the experiment. After 15 days and four iron additions totalling 1.1 tonne Fe2+, this was a very modest response compared to the other mesoscale iron enrichment experiments. An investigation of the factors limiting bloom development considered co- limitation by light and other nutrients, the phytoplankton seed-stock and grazing regulation. Whilst incident light levels and the initial Si:N ratio were the lowest recorded in all FeAX’s to date, there was only a small seed-stock of diatoms (less than 1% of biomass) and the main response to iron addition was by the picophytoplankton. A high rate of dilution of the fertilised patch relative to phytoplankton growth rate, the greater than expected depth of the surface mixed layer and microzooplankton grazing were all considered as factors that prevented significant biomass accumulation. In line with the limited response, the enhanced biological draw-down of pCO2 was small and masked by a general increase in pCO2 due to mixing with higher pCO2 waters. The DMS precursor DMSP was kept in check through grazing activity and in contrast to most FeAX’s dissolved dimethylsulfide (DMS) concentration declined through the experiment. SAGE is an important low-end member in the range of responses to iron addition in FeAX’s. In the context of iron fertilisation as a geoengineering tool for atmospheric CO2 removal, SAGE has clearly demonstrated that a significant proportion of the low iron ocean may not produce a phytoplankton bloom in response to iron addition.SAGE was jointly funded through the New Zealand Foundation for Research, Science and Technology (FRST) programs (C01X0204) "Drivers and Mitigation of Global Change" and (C01X0223) "Ocean Ecosystems: Their Contribution to NZ Marine Productivity." Funding was also provided for specific collaborations by the US National Science Foundation from grants OCE-0326814 (Ward), OCE-0327779 (Ho), and OCE 0327188 OCE-0326814 (Minnett) and the UK Natural Environment Research Council NER/B/S/2003/00282 (Archer). The New Zealand International Science and Technology (ISAT) linkages fund provided additional funding (Archer and Ziolkowski), and the many collaborator institutions also provided valuable support

    Epidemiology and heritability of Major Depressive Disorder, stratified by age of onset, sex, and illness course in Generation Scotland:Scottish Family Health Study (GS:SFHS)

    Get PDF
    The heritability of Major Depressive Disorder (MDD) has been estimated at 37% based largely on twin studies that rely on contested assumptions. More recently, the heritability of MDD has been estimated on large populations from registries such as the Swedish, Finnish, and Chinese cohorts. Family-based designs utilise a number of different relationships and provide an alternative means of estimating heritability. Generation Scotland: Scottish Family Health Study (GS:SFHS) is a large (n = 20,198), family-based population study designed to identify the genetic determinants of common diseases, including Major Depressive Disorder. Two thousand seven hundred and six individuals were SCID diagnosed with MDD, 13.5% of the cohort, from which we inferred a population prevalence of 12.2% (95% credible interval: 11.4% to 13.1%). Increased risk of MDD was associated with being female, unemployed due to a disability, current smokers, former drinkers, and living in areas of greater social deprivation. The heritability of MDD in GS:SFHS was between 28% and 44%, estimated from a pedigree model. The genetic correlation of MDD between sexes, age of onset, and illness course were examined and showed strong genetic correlations. The genetic correlation between males and females with MDD was 0.75 (0.43 to 0.99); between earlier (≤ age 40) and later (> age 40) onset was 0.85 (0.66 to 0.98); and between single and recurrent episodic illness course was 0.87 (0.72 to 0.98). We found that the heritability of recurrent MDD illness course was significantly greater than the heritability of single MDD illness course. The study confirms a moderate genetic contribution to depression, with a small contribution of the common family environment (variance proportion = 0.07, CI: 0.01 to 0.15), and supports the relationship of MDD with previously identified risk factors. This study did not find robust support for genetic differences in MDD due to sex, age of onset, or illness course. However, we found an intriguing difference in heritability between recurrent and single MDD illness course. These findings establish GS:SFHS as a valuable cohort for the genetic investigation of MDD
    • …
    corecore