435 research outputs found

    Wearable Nano-Based Gas Sensors for Environmental Monitoring and Encountered Challenges in Optimization

    Get PDF
    With a rising emphasis on public safety and quality of life, there is an urgent need to ensure optimal air quality, both indoors and outdoors. Detecting toxic gaseous compounds plays a pivotal role in shaping our sustainable future. This review aims to elucidate the advancements in smart wearable (nano)sensors for monitoring harmful gaseous pollutants, such as ammonia (NH3), nitric oxide (NO), nitrous oxide (N2O), nitrogen dioxide (NO2), carbon monoxide (CO), carbon dioxide (CO2), hydrogen sulfide (H2S), sulfur dioxide (SO2), ozone (O3), hydrocarbons (CxHy), and hydrogen fluoride (HF). Differentiating this review from its predecessors, we shed light on the challenges faced in enhancing sensor performance and offer a deep dive into the evolution of sensing materials, wearable substrates, electrodes, and types of sensors. Noteworthy materials for robust detection systems encompass 2D nanostructures, carbon nanomaterials, conducting polymers, nanohybrids, and metal oxide semiconductors. A dedicated section dissects the significance of circuit integration, miniaturization, real-time sensing, repeatability, reusability, power efficiency, gas-sensitive material deposition, selectivity, sensitivity, stability, and response/recovery time, pinpointing gaps in the current knowledge and offering avenues for further research. To conclude, we provide insights and suggestions for the prospective trajectory of smart wearable nanosensors in addressing the extant challenges

    A Case study of light pollution in France after the change in legislation

    Full text link
    France issued a decree to restrict and prohibit mainly outdoor lighting effective from January 1st, 2019. Effectiveness of this legislation has been evaluated in this study using GIS data which was first used in \cite{2020MNRAS.493.1204A} (so called astroGIS database - \url{astrogis.org}). A subset of Artificial Light layer of astroGIS database has been adapted for years between January 2012 and December 2019. During 2019, radiance of 1.9×1091.9 \times 10^{9} W cm2^{-2} sr1^{-1} has been released into space. Annual light pollution in France decreased by 6\% after the enactment of artificial light legislation. France continue to have potential Dark Sky Park locations for example cities like Indre, Lot, Nievre and Creuse having the lowest light pollution values. A strong correlation between population and light pollution (R0.83R\simeq 0.83) has been observed. A similar but a weak correlation can also be observed for GDP (R0.28R\simeq 0.28). However, it is still too early to justify whether the improvements observed in the dataset are due to the enactment of the legislation or not.Comment: 10 pages, 4 figures, 2 tables, Submitted to Astrophysics and Space Scienc

    Carbon nanotube anions for the preparation of gold nanoparticle–nanocarbon hybrids

    Get PDF
    Gold nanoparticles (AuNPs) can be evenly deposited on single-walled carbon nanotubes (SWCNTs) via the reduction of the highly stable complex, chloro(triphenylphosphine) gold(I), with SWCNT anions (‘nanotubides’). This methodology highlights the unusual chemistry of nanotubides and provides a blueprint for the generation of many other hybrid nanomaterials

    Probing the charging mechanisms of carbon nanomaterial polyelectrolytes

    No full text
    Chemical charging of single-walled carbon nanotubes (SWCNTs) and graphenes to generate soluble salts shows great promise as a processing route for electronic applications, but raises fundamental questions. The reduction potentials of highly-charged nanocarbon polyelectrolyte ions were investigated by considering their chemical reactivity towards metal salts/complexes in forming metal nanoparticles. The redox activity, degree of functionalisation and charge utilisation were quantified via the relative metal nanoparticle content, established using thermogravimetric analysis (TGA), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and X-ray photoelectron spectroscopy (XPS). The fundamental relationship between the intrinsic nanocarbon electronic density of states and Coulombic effects during charging is highlighted as an important area for future research

    Global Site Selection for Astronomy

    Get PDF
    A global site selection for astronomy was performed with 1 km spatial resolution (\sim 1 Giga pixel in size) using long term and up-to-date datasets to classify the entire terrestrial surface on the Earth. Satellite instruments are used to get the following datasets of Geographical Information System (GIS) layers: Cloud Coverage, Digital Elevation Model, Artificial Light, Precipitable Water Vapor, Aerosol Optical Depth, Wind Speed and Land Use -- Land Cover. A Multi Criteria Decision Analysis (MCDA) technique is applied to these datasets creating four different series where each layer will have a specific weight. We introduce for the first time a ``Suitability Index for Astronomical Sites'' namely, SIAS. This index can be used to find suitable locations and to compare different sites or observatories. Mid-western Andes in South America and Tibetan Plateau in west China were found to be the best in all SIAS Series. Considering all the series, less than 3 \% of all terrestrial surfaces are found to be the best regions to establish an astronomical observatory. In addition to this, only approximately 10 \% of all current observatories are located in good locations in all SIAS series. Amateurs, institutions or countries aiming to construct an observatory could create a short-list of potential site locations using layout of SIAS values for each country without spending time and budget.The outcomes and datasets of this study has been made available through a web site, namely ``Astro GIS Database'' on \texttt{\url{www.astrogis.org}}.Comment: 19 Pages, 4 Figures, 7 tables, Accepted for publication in MNRA

    A circular RNA generated from an intron of the insulin gene controls insulin secretion

    Get PDF
    Fine-tuning of insulin release from pancreatic β-cells is essential to maintain blood glucose homeostasis. Here, we report that insulin secretion is regulated by a circular RNA containing the lariat sequence of the second intron of the insulin gene. Silencing of this intronic circular RNA in pancreatic islets leads to a decrease in the expression of key components of the secretory machinery of β-cells, resulting in impaired glucose- or KCl-induced insulin release and calcium signaling. The effect of the circular RNA is exerted at the transcriptional level and involves an interaction with the RNA-binding protein TAR DNA-binding protein 43 kDa (TDP-43). The level of this circularized intron is reduced in the islets of rodent diabetes models and of type 2 diabetic patients, possibly explaining their impaired secretory capacity. The study of this and other circular RNAs helps understanding β-cell dysfunction under diabetes conditions, and the etiology of this common metabolic disorder

    A circular RNA generated from an intron of the insulin gene controls insulin secretion.

    Get PDF
    Fine-tuning of insulin release from pancreatic β-cells is essential to maintain blood glucose homeostasis. Here, we report that insulin secretion is regulated by a circular RNA containing the lariat sequence of the second intron of the insulin gene. Silencing of this intronic circular RNA in pancreatic islets leads to a decrease in the expression of key components of the secretory machinery of β-cells, resulting in impaired glucose- or KCl-induced insulin release and calcium signaling. The effect of the circular RNA is exerted at the transcriptional level and involves an interaction with the RNA-binding protein TAR DNA-binding protein 43 kDa (TDP-43). The level of this circularized intron is reduced in the islets of rodent diabetes models and of type 2 diabetic patients, possibly explaining their impaired secretory capacity. The study of this and other circular RNAs helps understanding β-cell dysfunction under diabetes conditions, and the etiology of this common metabolic disorder

    Brain function assessment in different conscious states

    Get PDF
    Background: The study of brain functioning is a major challenge in neuroscience fields as human brain has a dynamic and ever changing information processing. Case is worsened with conditions where brain undergoes major changes in so-called different conscious states. Even though the exact definition of consciousness is a hard one, there are certain conditions where the descriptions have reached a consensus. The sleep and the anesthesia are different conditions which are separable from each other and also from wakefulness. The aim of our group has been to tackle the issue of brain functioning with setting up similar research conditions for these three conscious states.Methods: In order to achieve this goal we have designed an auditory stimulation battery with changing conditions to be recorded during a 40 channel EEG polygraph (Nuamps) session. The stimuli (modified mismatch, auditory evoked etc.) have been administered both in the operation room and the sleep lab via Embedded Interactive Stimulus Unit which was developed in our lab. The overall study has provided some results for three domains of consciousness. In order to be able to monitor the changes we have incorporated Bispectral Index Monitoring to both sleep and anesthesia conditions.Results: The first stage results have provided a basic understanding in these altered states such that auditory stimuli have been successfully processed in both light and deep sleep stages. The anesthesia provides a sudden change in brain responsiveness; therefore a dosage dependent anesthetic administration has proved to be useful. The auditory processing was exemplified targeting N1 wave, with a thorough analysis from spectrogram to sLORETA. The frequency components were observed to be shifting throughout the stages. The propofol administration and the deeper sleep stages both resulted in the decreasing of N1 component. The sLORETA revealed similar activity at BA7 in sleep (BIS 70) and target propofol concentration of 1.2 μg/mL.Conclusions: The current study utilized similar stimulation and recording system and incorporated BIS dependent values to validate a common approach to sleep and anesthesia. Accordingly the brain has a complex behavior pattern, dynamically changing its responsiveness in accordance with stimulations and states. © 2010 Ozgoren et al; licensee BioMed Central Ltd
    corecore