2,468 research outputs found

    The QUEST RR Lyrae Survey: Confirmation of the Clump at 50 kpc and Other Over-Densities in the Outer Halo

    Get PDF
    We have measured the periods and light curves of 148 RR Lyrae variables from V=13.5 to 19.7 from the first 100 sq. degrees of the QUEST RR Lyrae survey. Approximately 55% of these stars belong to the clump of stars detected earlier by the Sloan Digital Sky Survey. According to our measurements, this feature has ~10 times the background density of halo stars, spans at least 37.5 deg by 3.5 deg in right ascension and declination (>=30 by >=3 kpc), lies ~50 kpc from the Sun, and has a depth along the line of sight of ~5 kpc (1 sigma). These properties are consistent with the recent models that suggest it is a tidal stream from the Sgr dSph galaxy. The mean period of the type ab variables, 0.58 d, is also consistent. In addition, we have found two smaller over-densities in the halo, one of which may be related to the globular cluster Pal 5.Comment: 12 pages (including 4 figures). Accepted for publication in the ApJ Letter

    Energy improvements of CO2 transcritical refrigeration cycles using dedicated mechanical subcooling

    Full text link
    [EN] In this work the possibilities of enhancing the energy performance of CO2 transcritical refrigeration systems using a dedicated mechanical subcooling cycle are analysed theoretically. Using simplified models of the cycles, the modification of the optimum operating conditions of the CO2 transcritical cycle by the use of the mechanical subcooling are analysed and discussed. Next, for the optimum conditions, the possibilities of improving the energy performance of the transcritical cycle with the mechanical subcooling are evaluated for three evaporating levels (5, 5 and 30 C) for environment temperatures from 20 to 35 C using propane as refrigerant for the subcooling cycle. It has been observed that the cycle combination will allow increasing the COP up to a maximum of 20% and the cooling capacity up to a maximum of 28.8%, being both increments higher at high evaporating levels. Furthermore, the results indicate that this cycle is more convenient for environment temperatures above 25 C. Finally, the results using different refrigerants for the mechanical subcooling cycle are presented, where no important differences are observed.The authors gratefully acknowledge Jaume I University of Spain, who financed the present study through the research project P1.B2013-10.Llopis Doménech, R.; Cabello, R.; Sanchez, D.; Torrella Alcaraz, E. (2015). Energy improvements of CO2 transcritical refrigeration cycles using dedicated mechanical subcooling. International Journal of Refrigeration. 55:129-141. https://doi.org/10.1016/j.ijrefrig.2015.03.016S1291415

    Fabrication and electrokinetic motion of electrically anisotropic Janus droplets in microchannels

    Get PDF
    This is the peer reviewed version of the following article: Li, M. and Li, D. (2017), Fabrication and electrokinetic motion of electrically anisotropic Janus droplets in microchannels. ELECTROPHORESIS, 38: 287–295 which has been published in final form at http://dx.doi.org/10.1002/elps.201600310. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.This paper presents experimental investigations of the fabrication and the motion of electrically anisotropic Janus droplets in a microchannel under externally applied direct current (DC) electrical field. The fabrication method of the Janus droplets is presented first. To begin, oil droplets are coated uniformly with positively charged nanoparticles in the aluminum oxide nanoparticle suspension. The electrically anisotropic Janus droplets are formed when the nanoparticles are accumulated to one side of the droplets in response to externally applied DC electric field. The surface coverage of the Janus droplets by nanoparticles can be adjusted by controlling the concentration of the nanoparticle suspension. The flow fields around the Janus droplets moving in a microchannel were observed with tracing particles. Finally, the electrokinetic velocity of the Janus droplets in a microchannel was measured. The effects of the strength of the electrical field, the surface coverage of the Janus droplets by nanoparticles, the size of the droplets as well as the electrolyte concentration on the electrokinetic velocity of the Janus droplets were studied.Natural Sciences and Engineering Research Council of Canad

    Discovery of the Optical Transient of the Gamma Ray Burst 990308

    Full text link
    The optical transient of the faint Gamma Ray Burst 990308 was detected by the QUEST camera on the Venezuelan 1-m Schmidt telescope starting 3.28 hours after the burst. Our photometry gives V=18.32±0.07V = 18.32 \pm 0.07, R=18.14±0.06R = 18.14 \pm 0.06, B=18.65±0.23B = 18.65 \pm 0.23, and R=18.22±0.05R = 18.22 \pm 0.05 for times ranging from 3.28 to 3.47 hours after the burst. The colors correspond to a spectral slope of close to fνν1/3f_{\nu} \propto \nu^{1/3}. Within the standard synchrotron fireball model, this requires that the external medium be less dense than 104cm310^{4} cm^{-3}, the electrons contain >20> 20% of the shock energy, and the magnetic field energy must be less than 24% of the energy in the electrons for normal interstellar or circumstellar densities. We also report upper limits of V>12.0V > 12.0 at 132 s (with LOTIS), V>13.4V > 13.4 from 132-1029s (with LOTIS), V>15.3V > 15.3 at 28.2 min (with Super-LOTIS), and a 8.5 GHz flux of <114μJy< 114 \mu Jy at 110 days (with the Very Large Array). WIYN 3.5-m and Keck 10-m telescopes reveal this location to be empty of any host galaxy to R>25.7R > 25.7 and K>23.3K > 23.3. The lack of a host galaxy likely implies that it is either substantially subluminous or more distant than a red shift of 1.2\sim 1.2.Comment: ApJ Lett submitted, 5 pages, 2 figures, no space for 12 coauthor

    Microwave synthesis of novel water-soluble 2-, 5- and 9-substituted benzo[a]phenoxazinium chlorides in comparison with conventional heating

    Get PDF
    Microwave irradiation was used for the first time in an efficient synthesis of benzo[a]phenoxazinium chlorides. The main advantage of this protocol is the notable reduction in reaction times and good to excellent yields of the products were achieved in comparison with classical heating conditions as described. These new series of compounds possess 5-amine and/or 2-hydroxyl substituents in the polycyclic system to improve their solubility in aqueous media, in addition to the functional groups as terminals in the side chains, allowing their further use in covalent labeling. Fundamental photophysical studies carried out in ethanol, physiological pH and water revealed that all cationic fluorophores absorbed and emitted in the range of 610-628 nm and 630-652 nm, respectively, with relative fluorescent quantum yields ranging from 0.16 to 0.96.Fundação para a Ciência e Tecnologia (Portugal) - financial support to the Research Centres, CQ/UM [PEst-C/QUI/UI0686/2011 (FCOMP-01-0124-FEDER-022716)] and CFUM [PEst-C/FIS/UI0607/2011 (F-COMP-01-0124-FEDER-022711)], FEDER-COMPETE, FCT-Portugal. FCT, POPH-QREN, FSE - a post-doctoral grant (SFRH/BPD/62881/2009) to B. R. Raju The NMR spectrometer Bruker Avance III 400 is part of the National NMR Network and was purchased in the framework of the National Program for Scientific Re-equipment, contract REDE/1517/RMN/2005 with funds from POCI 2010 (FEDER) and FCT

    The porin and the permeating antibiotic: A selective diffusion barrier in gram-negative bacteria

    Get PDF
    Gram-negative bacteria are responsible for a large proportion of antibiotic resistant bacterial diseases. These bacteria have a complex cell envelope that comprises an outer membrane and an inner membrane that delimit the periplasm. The outer membrane contains various protein channels, called porins, which are involved in the influx of various compounds, including several classes of antibiotics. Bacterial adaptation to reduce influx through porins is an increasing problem worldwide that contributes, together with efflux systems, to the emergence and dissemination of antibiotic resistance. An exciting challenge is to decipher the genetic and molecular basis of membrane impermeability as a bacterial resistance mechanism. This Review outlines the bacterial response towards antibiotic stress on altered membrane permeability and discusses recent advances in molecular approaches that are improving our knowledge of the physico-chemical parameters that govern the translocation of antibiotics through porin channel

    Review of solid–liquid phase change materials and their encapsulation technologies

    Get PDF
    Various types of solid–liquid phase change materials (PCMs) have been reviewed for thermal energy storage applications. The review has shown that organic solid–liquid PCMs have much more advantages and capabilities than inorganic PCMs but do possess low thermal conductivity and density as well as being flammable. Inorganic PCMs possess higher heat storage capacities and conductivities, cheaper and readily available as well as being non-flammable, but do experience supercooling and phase segregation problems during phase change process. The review has also shown that eutectic PCMs have unique advantage since their melting points can be adjusted. In addition, they have relatively high thermal conductivity and density but they possess low latent and specific heat capacities. Encapsulation technologies and shell materials have also been examined and limitations established. The morphology of particles was identified as a key influencing factor on the thermal and chemical stability and the mechanical strength of encapsulated PCMs. In general, in-situ polymerization method appears to offer the best technological approach in terms of encapsulation efficiency and structural integrity of core material. There is however the need for the development of enhancement methods and standardization of testing procedures for microencapsulated PCMs

    Preparation and surface functionalization of MWCNTs: study of the composite materials produced by the interaction with an iron phthalocyanine complex

    Get PDF
    Carbon nanotubes [CNTs] were synthesized by the catalytic vapor decomposition method. Thereafter, they were functionalized in order to incorporate the oxygen groups (OCNT) and subsequently the amine groups (ACNT). All three CNTs (the as-synthesized and functionalized) underwent reaction with an iron organometallic complex (FePcS), iron(III) phthalocyanine-4,4",4",4""-tetrasulfonic acid, in order to study the nature of the interaction between this complex and the CNTs and the potential formation of nanocomposite materials. Transmission electronic microscopy, N2 adsorption at 77 K, thermogravimetric analysis, temperature-programmed desorption, and X-ray photoelectron spectroscopy were the characterization techniques employed to confirm the successful functionalization of CNTs as well as the type of interaction existing with the FePcS. All results obtained led to the same conclusion: There were no specific chemical interactions between CNTs and the fixed FePcS
    corecore