21 research outputs found

    Enhanced hydrogen production from thermochemical processes

    Get PDF
    To alleviate the pressing problem of greenhouse gas emissions, the development and deployment of sustainable energy technologies is necessary. One potentially viable approach for replacing fossil fuels is the development of a H2 economy. Not only can H2 be used to produce heat and electricity, it is also utilised in ammonia synthesis and hydrocracking. H2 is traditionally generated from thermochemical processes such as steam reforming of hydrocarbons and the water-gas-shift (WGS) reaction. However, these processes suffer from low H2 yields owing to their reversible nature. Removing H2 with membranes and/or extracting CO2 with solid sorbents in situ can overcome these issues by shifting the component equilibrium towards enhanced H2 production via Le Chatelier's principle. This can potentially result in reduced energy consumption, smaller reactor sizes and, therefore, lower capital costs. In light of this, a significant amount of work has been conducted over the past few decades to refine these processes through the development of novel materials and complex models. Here, we critically review the most recent developments in these studies, identify possible research gaps, and offer recommendations for future research

    Hypoxic environments as refuge against predatory fish in the Amazonian floodplains

    Get PDF
    Several groups of Amazonian fishes exhibit behavioral, morphological and physiological characteristics that allow occupying hypoxic environments, despite the energetic costs of living in such harsh conditions. One of the supposed advantages of occupying hypoxic habitats would be a lower predation pressure resulting from a lower number of piscivorous fishes in those environments. We tested this hypothesis in an area of the Amazon River floodplain through gill net fishing in normoxic and hypoxic habitats. From the 103 species caught, 38 were classified as piscivores. We found no difference in the number of piscivorous species captured in hypoxic and normoxic habitats (χ2 = 0.23; p = 0.63; df = 1) but piscivorous individuals were more numerous in normoxic than in hypoxic sampling stations (χ2 = 104.4; p < 0.001; df = 1). This indicates that environments submitted to low oxygen conditions may in fact function as refuges against piscivorous fishes in the Amazonian floodplains

    Enhanced hydrogen production from thermochemical processes

    No full text
    corecore