111 research outputs found

    Phylogeny-Based Systematization of Arabidopsis Proteins with Histone H1 Globular Domain.

    Get PDF
    H1 (or linker) histones are basic nuclear proteins that possess an evolutionarily conserved nucleosome-binding globular domain, GH1. They perform critical functions in determining the accessibility of chromatin DNA to trans-acting factors. In most metazoan species studied so far, linker histones are highly heterogenous, with numerous nonallelic variants cooccurring in the same cells. The phylogenetic relationships among these variants as well as their structural and functional properties have been relatively well established. This contrasts markedly with the rather limited knowledge concerning the phylogeny and structural and functional roles of an unusually diverse group of GH1-containing proteins in plants. The dearth of information and the lack of a coherent phylogeny-based nomenclature of these proteins can lead to misunderstandings regarding their identity and possible relationships, thereby hampering plant chromatin research. Based on published data and our in silico and high-throughput analyses, we propose a systematization and coherent nomenclature of GH1-containing proteins of Arabidopsis (Arabidopsis thaliana [L.] Heynh) that will be useful for both the identification and structural and functional characterization of homologous proteins from other plant species

    Computer-assisted assessment of the histological structure of the human sural nerve

    Get PDF
    Background: The aim of this study was to assess the histological structure (cross-sectional area — CSA, number of nerve bundles) of the human sural nerve at the level above the lateral malleolus, using computer-assisted image analysis.Materials and methods: This study has been conducted using sural nerves dissected from cadavers during routine autopsies. The harvested tissues samples were dehydrated, embedded in paraffin, sectioned at 4 μm and stained with haematoxylin and eosin. Each cross-section was photographed (16 × magnification) and the images were analysed using Java ImageJ.Results: The studied group comprised 12 women and 25 men (mean age 60.1 ± 15.7 years), yielding a total of 74 sural nerves (37 right vs. 37 left). The mean ± standard deviation CSA of the sural nerve was 0.14 ± 0.07 cm2. The mean number of nerve bundles in the sural nerve was 10.5 ± 6.0. In terms of gender and side, neither the CSA (p = 0.45 and p = 0.79, respectively) nor the number of nerve bundles revealed any differences (p = 0.34 and p = 0.47, respectively). Strong negative correlations were noted between the age of the donors and the sural nerve CSA (r = –0.69,p = 0.02), as well as the number of nerve bundles (r = –0.57, p = 0.06).Conclusions: This study shows that there are no statistical differences between the CSA and the number of nerve bundles in the sural nerve when compared by gender and side of the lower limb. This study also allows drawing the conclusion that the sural nerve degenerates with age in terms of both the CSA and the number of nerve bundles

    The anatomical landmarks effective in the localisation of the median nerve during orthopaedic procedures

    Get PDF
    Background: The aim of this study was to create a safe zone for surgeons who perform procedures in the wrist to avoid iatrogenic damage to the median nerve (MN) by identifying anatomical landmarks using ultrasound (USG).Materials and methods: We measured the distances between the MN and two easily identifiable anatomical landmarks at the level of the proximal border of carpal ligament using USG.Results: A total of 57 volunteers (n = 114 upper limbs) were included in this study. Our main findings revealed that the distance from the flexor carpi radialis tendon to MN (FCR-MN) was 7.87 mm (95% confidence interval 7.37–8.37) and the distance from flexor carpi ulnaris tendon to MN (FCU-MN) was 19.09 mm (95% confidence interval 18.51–19.67).Conclusions: The tendons of FCR and FCU are easily identifiable landmarks that can be distinguished using simple palpation. Based on our USG findings, the area around FCR should be carefully navigated to avoid iatrogenic injury to the MN during surgical procedures around the carpal tunnel

    Multiscale chromatin dynamics and high entropy in plant iPSC ancestors

    Get PDF
    Plant protoplasts provide starting material for of inducing pluripotent cell masses that are competent for tissue regeneration in vitro, analogous to animal induced pluripotent stem cells (iPSCs). Dedifferentiation is associated with large-scale chromatin reorganisation and massive transcriptome reprogramming, characterised by stochastic gene expression. How this cellular variability reflects on chromatin organisation in individual cells and what factors influence chromatin transitions during culturing are largely unknown. Here, we used high-throughput imaging and a custom supervised image analysis protocol extracting over 100 chromatin features of cultured protoplasts. The analysis revealed rapid, multiscale dynamics of chromatin patterns with a trajectory that strongly depended on nutrient availability. Decreased abundance in H1 (linker histones) is hallmark of chromatin transitions. We measured a high heterogeneity of chromatin patterns indicating intrinsic entropy as a hallmark of the initial cultures. We further measured an entropy decline over time, and an antagonistic influence by external and intrinsic factors, such as phytohormones and epigenetic modifiers, respectively. Collectively, our study benchmarks an approach to understand the variability and evolution of chromatin patterns underlying plant cell reprogramming in vitro

    Chromatin dynamics during interphase and cell division:similarities and differences between model and crop plants

    Get PDF
    Genetic information in the cell nucleus controls organismal development, responses to the environment and finally ensures own transmission to the next generations. To achieve so many different tasks, the genetic information is associated with structural and regulatory proteins, which orchestrate nuclear functions in time and space. Furthermore, plant life strategies require chromatin plasticity to allow a rapid adaptation to abiotic and biotic stresses. Here, we summarize current knowledge on the organisation of plant chromatin and dynamics of chromosomes during interphase and mitotic and meiotic cell divisions for model and crop plants differing as to the genome size, ploidy and amount of genomic resources available. The existing data indicate that chromatin changes accompany most (if not all) cellular processes and that there are both shared and unique themes in the chromatin structure and global chromosome dynamics among species. Ongoing efforts to understand the molecular mechanisms involved in chromatin organisation and remodeling have, together with the latest genome editing tools, potential to unlock crop genomes for innovative breeding strategies and improvements of various traits

    Sphenoid bone and its sinus : anatomo-clinical review of the literature including application to FESS

    Get PDF
    Authors paid attention to anatomy and clinical implications which are associated with the variations of the sphenoid sinus. We discuss also anatomical structure of the sphenoid bone implementing clinical application of this bone to different invasive and miniinvasive procedures (i.e. FESS)
    corecore