10 research outputs found

    Rainfall estimates on a gridded network (REGEN) – a global land-based gridded dataset of daily precipitation from 1950 to 2016

    Get PDF
    We present a new global land-based daily precipitation dataset from 1950 using an interpolated network of in situ data called Rainfall Estimates on a Gridded Network – REGEN. We merged multiple archives of in situ data including two of the largest archives, the Global Historical Climatology Network – Daily (GHCN-Daily) hosted by National Centres of Environmental Information (NCEI), USA, and one hosted by the Global Precipitation Climatology Centre (GPCC) operated by Deutscher Wetterdienst (DWD). This resulted in an unprecedented station density compared to existing datasets. The station time series were quality-controlled using strict criteria and flagged values were removed. Remaining values were interpolated to create area-average estimates of daily precipitation for global land areas on a 1∘ × 1∘ latitude–longitude resolution. Besides the daily precipitation amounts, fields of standard deviation, kriging error and number of stations are also provided. We also provide a quality mask based on these uncertainty measures. For those interested in a dataset with lower station network variability we also provide a related dataset based on a network of long-term stations which interpolates stations with a record length of at least 40 years. The REGEN datasets are expected to contribute to the advancement of hydrological science and practice by facilitating studies aiming to understand changes and variability in several aspects of daily precipitation distributions, extremes and measures of hydrological intensity. Here we document the development of the dataset and guidelines for best practices for users with regards to the two datasets.This research has been supported by the Australian Research Council (grant nos. DP160103439, CE110001028 and DE150100456) and the Spanish Ministry for Science and Innovation (grant no. RYC-2017-22964)Peer ReviewedPostprint (published version

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    Misfit of complete maxillary dentures' posterior palatal seal following polymerisation with four different autopolymerising resins: an in vitro study

    No full text
    Background: The majority of complete dentures are still conventionally manufactured using a flask-and-pack technique. However, the polymerization process may introduce a distortion of the denture body. The aim of this study was to evaluate the three-dimensional fit of the posterior palatal seal of maxillary complete dentures with the original impression, and to give recommendations for scraping. Methods: Four autopolymerising resins were used to manufacture 40 palatal plates each for high, medium and flat palates (total n = 120). The misfit was captured by taking a reline impression with a highly fluid silicone, the dimensions of which were measured with a flat-bed scanner. Results: The shape of the palate had a significant impact (medianp= 0.0435), but not the resin type (medianp= 0.2575). It was largest for the flat palate and smallest for the high palate. The largest misfit was observed in the palatal midline area (flat-palate average median: 685 µm; high and medium palates: 620 µm) decreasing towards the lateral and anterior regions. Conclusions: The results suggest compensating for the palatal misfit that occurs with autopolymerising resins by scraping a postdam of an approximately 0.7 mm depth to the master cast, decreasing towards the anterior and lateral areas. In high and medium palates, the scraping could be less pronounced.</p

    Evaluating the Hydrological Cycle over Land Using the Newly-Corrected Precipitation Climatology from the Global Precipitation Climatology Centre (GPCC)

    No full text
    The 2015 release of the precipitation climatology from the Global Precipitation Climatology Centre (GPCC) for 1951–2000, based on climatological normals of about 75,100 rain gauges, allows for quantification of mean land surface precipitation as part of the global water cycle. In GPCC’s 2011-release, a bulk climatological correction was applied to compensate for gauge undercatch. In this paper we derive an improved correction approach based on the synoptic weather reports for the period 1982–2015. The compared results show that the climatological approach tends to overestimate the correction for Central and Eastern Europe, especially in the northern winter, and in other regions throughout the year. Applying the mean weather-dependent correction to the GPCC’s uncorrected precipitation climatology for 1951–2000 gives a value of 854.7 mm of precipitation per year (excluding Antarctica) or 790 mm for the global land surface. The warming of nearly 1 K relative to pre-industrial temperatures is expected to be accompanied by a 2%–3% increase in global (land and ocean) precipitation. However, a comparison of climatology for 30-year reference periods from 1931–1960 up to 1981–2010 reveals no significant trend for land surface precipitation. This may be caused by the large variability of precipitation, the varying data coverage over time and other issues related to the sampling of rain-gauge networks. The GPCC continues to enlarge and further improve the quality of its database, and will generate precipitation analyses with homogeneous data coverage over time. Another way to reduce the sampling issues is the combination of rain gauge-based analyses with remote sensing (i.e., satellite or radar) datasets

    Precipitation trends in the island of Ireland using a dense, homogenized, observational dataset

    Get PDF
    A dense monthly precipitation dataset of Ireland and Northern Ireland was homogenized with several modern homogenization methods. The efficiency of these homogenizations was tested by examining the similarity of homogenization results both in the real data homogenization and in the homogenization of a simulated dataset. The analysis of homogenization results shows that the real dataset is characterized by a large number of, but mostly small, non-climatic biases, and a moderate reduction of such biases can be achieved with homogenization. Finally, a combination of the ACMANT and Climatol homogenization results was applied to improve the data accuracy before the trend calculations. These two methods were selected for their proven high accuracy, missing data tolerance and ability to complete time series via the infilling of missing values before the trend calculations. Metadata were used within the Climatol method. To facilitate this analysis the study area was split into smaller climatic regions by using the Ward clustering method. Five climatic zones consistent with the known spatial patterns of precipitation in Ireland were established. Linear regression fitting and the Mann-Kendall test were applied. Low frequency fluctuations were also examined by applying a Gaussian filter. The results show that the precipitation amount generally increases in the study area, particularly in the northwestern region. The most significant increasing trends for the whole study period (1941–2010) are found for late winter and spring precipitation, as well as for the annual totals. In the period from the early 1970s the increase of precipitation is general in all seasons of the year except in winter, but the statistical significance of this increase is weak

    CERA-20C: A Coupled Reanalysis of the Twentieth Century

    Get PDF
    CERA-20C is a coupled reanalysis of the twentieth century which aims to reconstruct the past weather and climate of the Earth system including the atmosphere, ocean, land, ocean waves, and sea ice. This reanalysis is based on the CERA coupled atmosphere-ocean assimilation system developed at ECMWF. CERA-20C provides a 10 member ensemble of reanalyses to account for errors in the observational record as well as model error. It benefited from the prior experience of the retrospective atmospheric analysis ERA-20C. The dynamical model and the data assimilation systems initially developed for NWP had been modified to take into account the evolution of the radiative forcing and the observing system. To limit the impact of changes in the observing system throughout the century, only conventional surface observations have been used in the atmosphere. CERA-20C improves the specification of the background and the observation errors, two key elements to ensure a consistent weighting of the uncertainties across geophysical variables, space, and time. The quality of CERA-20C has been evaluated against other centennial reanalyses and independent observations. Although CERA-20C inherits some limitations of ERA-20C to represent correctly the tropical cyclones in the first part of the century, it shows significant improvements in the troposphere, compared to ERA-20C and 20CRv2c (the twentieth century reanalysis produced by NOAA/CIRES). A preliminary study of the climate variability in CERA-20C has been carried out. CERA-20C improves on the representation of atmosphere-ocean heat fluxes and mean sea level pressure compared to previous uncoupled ocean and atmospheric historical reanalyses performed at ECMWF

    The EU-FP7 ERA-CLIM2 project contribution to advancing science and production of Earth-system climate reanalyses

    Get PDF
    The main goals and activities of the ERA-CLIM2 project are presented, and some of its key results, included the first ensemble of coupled reanalysis of the 20th century, are discussed. ERA-CLIM2 is a European Union Seventh Framework Project started in January 2014 and due to be completed in December 2017. It aimed to produce coupled reanalyses, which are physically consistent data sets describing the evolution of the global atmosphere, ocean, land-surface, cryosphere and the carbon cycle. ERA-CLIM2 has contributed to advancing the capacity for producing state-of-the-art climate reanalyses that extend back to the early 20th century. ERA-CLIM2 has led to the generation of the first European ensemble of coupled ocean, sea-ice, land and atmosphere reanalyses of the 20th century. The project has funded work to rescue and prepare observations, and to advance the data-assimilation systems required to generate operational reanalyses, such as the ones planned by the European Union Copernicus Climate Change Service. This paper summarizes the main goals of the project, discusses some of its main areas of activities, and presents some of its key results

    CERA-20C: A Coupled Reanalysis of the Twentieth Century

    No full text
    CERA‐20C is a coupled reanalysis of the twentieth century which aims to reconstruct the past weather and climate of the Earth system including the atmosphere, ocean, land, ocean waves, and sea ice. This reanalysis is based on the CERA coupled atmosphere‐ocean assimilation system developed at ECMWF. CERA‐20C provides a 10 member ensemble of reanalyses to account for errors in the observational record as well as model error. It benefited from the prior experience of the retrospective atmospheric analysis ERA‐20C. The dynamical model and the data assimilation systems initially developed for NWP had been modified to take into account the evolution of the radiative forcing and the observing system. To limit the impact of changes in the observing system throughout the century, only conventional surface observations have been used in the atmosphere. CERA‐20C improves the specification of the background and the observation errors, two key elements to ensure a consistent weighting of the uncertainties across geophysical variables, space, and time. The quality of CERA‐20C has been evaluated against other centennial reanalyses and independent observations. Although CERA‐20C inherits some limitations of ERA‐20C to represent correctly the tropical cyclones in the first part of the century, it shows significant improvements in the troposphere, compared to ERA‐20C and 20CRv2c (the twentieth century reanalysis produced by NOAA/CIRES). A preliminary study of the climate variability in CERA‐20C has been carried out. CERA‐20C improves on the representation of atmosphere‐ocean heat fluxes and mean sea level pressure compared to previous uncoupled ocean and atmospheric historical reanalyses performed at ECMWF.© 2018 The Author
    corecore