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Abstract CERA-20C is a coupled reanalysis of the twentieth century which aims to reconstruct the past
weather and climate of the Earth system including the atmosphere, ocean, land, ocean waves, and sea ice.
This reanalysis is based on the CERA coupled atmosphere-ocean assimilation system developed at ECMWF.
CERA-20C provides a 10 member ensemble of reanalyses to account for errors in the observational record
as well as model error. It benefited from the prior experience of the retrospective atmospheric analysis
ERA-20C. The dynamical model and the data assimilation systems initially developed for NWP had been
modified to take into account the evolution of the radiative forcing and the observing system. To limit the
impact of changes in the observing system throughout the century, only conventional surface observations
have been used in the atmosphere. CERA-20C improves the specification of the background and the obser-
vation errors, two key elements to ensure a consistent weighting of the uncertainties across geophysical
variables, space, and time. The quality of CERA-20C has been evaluated against other centennial reanalyses
and independent observations. Although CERA-20C inherits some limitations of ERA-20C to represent cor-
rectly the tropical cyclones in the first part of the century, it shows significant improvements in the tropo-
sphere, compared to ERA-20C and 20CRv2c (the twentieth century reanalysis produced by NOAA/CIRES).
A preliminary study of the climate variability in CERA-20C has been carried out. CERA-20C improves on the
representation of atmosphere-ocean heat fluxes and mean sea level pressure compared to previous
uncoupled ocean and atmospheric historical reanalyses performed at ECMWF.

1. Introduction

Since its creation in 1975, ECMWF has been a key player in the production of reanalyses, which provide a
numerical description of the recent climate by combining models with observations. The initial focus was
on producing atmospheric reanalyses covering the satellite observing period, from 1979 onward. The first
of these reanalyses, FGGE, was produced in the 1980s, followed by ERA-15, ERA-40 (Uppala et al., 2005), and
ERA-Interim (Dee et al., 2011). The fifth reanalysis in this series, ERA5, is now in production after years of
research since ERA-Interim, and intense technical preparations (Hersbach & Dee, 2016). ECMWF is also
producing ocean reanalyses with the replacement in 2016 of ORAS4 (Ocean Reanalysis System 4) by ORAS5
to incorporate the latest improvements in ocean models, data assimilation methods, and forcing fluxes
(Balmaseda et al., 2013).

The various reanalysis products have proven to be important resources for weather and climate-related
research as well as societal applications at large (Gregow et al., 2016). At ECMWF, reanalyses also support
continuous improvement of numerical weather prediction. One example is the construction of a reforecast
ensemble based on the current model and initialized from reanalyses. This M-climate set is compared to the
operational forecast to compute the Extreme Forecast Index (EFI) which provides specialized forecast guid-
ance for anomalous, extreme, or severe weather events (e.g., heavy precipitation, strong winds, heavy snow-
fall, extreme temperatures, and unusually high ocean waves). Furthermore, reforecasts started from
reanalyses allow a better and more complete estimate of forecast reliability and accuracy. Reanalyses make
it possible to study the interannual variability of forecast skill and to test new model versions on past severe
weather cases. At ECMWF, this is true for both the medium-range/monthly ensemble (ENS) and for the
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seasonal ensemble (SEAS5). ERA-Interim and ORAS5 are the current operational atmospheric and ocean
reanalyses at ECMWF, continuing in near real time. They are both created using versions of the data assimi-
lation system and model that are kept unchanged during the reanalysis production, while ingesting a vari-
ety of satellite and in situ observations to provide the best state estimate over the data-rich time period
since 1979. Several other weather and research centers apply the same methodology to produce recent
global atmospheric reanalyses based on their model and data assimilation systems. NASA is now continuing
production in near-real-time of the second version of the Modern-Era Retrospective analysis for Research
and Applications (MERRA2; Gelaro et al., 2017). The first coupled reanalysis of the global atmosphere, ocean,
land surface, and cryosphere was created by NCEP with the Climate Forecast System Reanalysis spanning
the period 1979 onward (CFSR; Saha et al., 2010). JMA carried out a reanalysis project known as the Japa-
nese 55-year Reanalysis (JRA-55) to provide time series of a comprehensive set of atmospheric variables
which cover the period 1958 to present (Kobayashi et al., 2015). Similar activities are conducted by the oper-
ational oceanographic community to continuously produce ocean reanalyses and to coordinate intercom-
parison projects, such as the Ocean Reanalyses Intercomparison Project ORA-IP (Balmaseda et al., 2015).

Extending these reanalyses further back in time is a tremendous scientific challenge as the observing sys-
tem is very sparse before the availability of satellite data from the 1970s onward, and especially before the
arrival of radiosonde measurements in the 1930s (Stickler et al., 2014). Information about the nature and
quality of early instrumentation is often incomplete (Kennedy, 2014). Furthermore, locating and gaining
access to early weather observations requires dedicated efforts in data rescue and digitization, especially in
parts of the world that are most affected by climate change and variability (Allan et al., 2011). The skill of
reanalyses is limited in the Southern Ocean by a lack of historical observations. The ERA-CLIM and ERA-
CLIM2 projects have imaged information on surface meteorological variables for the Southern Ocean for
the early twentieth century. These documents include dedicated meteorological logbooks as well as com-
mon ships’ logbooks, meteorological forms, whale catch books, day reports, ice reports, ice charts, and
other relevant items. Types and frequency of observations will vary from one document to another but typi-
cally there is barometric pressure and air, temperature, wind direction and force, weather, cloud cover, SST,
sea state and swell, sometimes salinity and biological observations, sea ice, and icebergs (Bronnimann et al.,
2018). To tackle the unavoidable issue of the ever-changing observational network, a whitelisting approach
to data selection for reanalyses covering the whole twentieth century has been developed. Instead of assim-
ilating the full observing system at any time, only observation types that are reliably available around the
globe for the entire century are used. Compo et al. (2006) demonstrated the feasibility of producing a useful
global atmospheric reanalysis spanning a century or more with modern data assimilation methods and only
surface pressure observations. However, the surface pressure network changes across the century in terms
of sampling and data quality which means that inhomogeneities in the reduced observing system cannot
be completed avoided. The Twentieth Century Reanalysis (20CRv2c) data set extending back to 1851 was
produced by NOAA/CIRES using the NCEP atmosphere/land model to generate first-guess fields with inter-
polated monthly sea-surface temperature and sea-ice concentration fields from the Hadley Centre Sea Ice
and SST data set (HadISST) as prescribed boundary conditions (Compo et al., 2011). The 20CRv2c reanalysis
faithfully reconstructs the large-scale tropospheric circulation having a correlation between 300 hPa geopo-
tential height subdaily anomalies and radiosondes larger than 0.8 for 1958–1978 (Compo et al., 2011).

The quality of such historical reanalyses depends on the density of observations and cannot outperform a
comparable system that uses all sources of observations, including satellite and upper-air measurements. In
fact, a research reanalysis for the 1939–1967 period which assimilates radiosonde data (ERA-preSAT; Hers-
bach et al., 2017) correlates better with independent observations than 20CRV2c. The whitelisting approach
to data selection, where observations are used only if they are known to be suitable for climate applications,
reduces the artificial variability and spurious trends generated by the introduction of new instruments. This
is what makes it possible to generate valuable climate reconstructions that cover a period of 100 years or
more in order to investigate low-frequency climate variability. The overall aim is to improve our ability to
produce consistent reanalyses of the climate system, reaching back in time as far as possible given the avail-
able instrumental record. Historical reanalyses try to recreate the weather, while remaining faithful to overall
climate trends. This allows researchers to study statistics of weather events on climate timescales. In this
context, following the example of NCEP (Compo et al., 2011), ECMWF produced the atmospheric reanalysis
ERA-20C during the ERA-CLIM project, which covers the period January 1900 to December 2010 (Poli et al.,
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2016). ERA-20C assimilates only conventional observations of surface pressure and marine wind, obtained
from well-established climate data collections. Model forcings are specified from the Coupled Model Inter-
comparison Project Phase 5 (CMIP5; Taylor et al., 2012) recommendations to obtain an appropriate climate
reconstruction. The atmospheric lower boundary conditions are prescribed using the HadISST2 monthly
analysis product for sea-surface temperature and sea ice. ERA-20C delivered 3 hourly products describing
the spatial and temporal evolution of the atmosphere, land surface, and waves. Recognizing the importance
of properly accounting for changing background errors, ERA-20C was first devised as a 10 member ensem-
ble of 4D-Var assimilation system to create spatiotemporally varying background errors (Poli et al., 2013).
On this basis, a deterministic 4D-Var system had been run using the flow-dependent background errors and
fixing several issues, and then publicly released.

The reanalysis capabilities developed in the ERA-CLIM project have been extended to the ocean and sea-ice
components in the ERA-CLIM2 project (Buizza et al., 2018). ORA-20C is an uncoupled ocean reanalysis, and
reconstructs the ocean and sea-ice state over the twentieth century (de Boisseson et al., 2017). Temperature
and salinity profiles are assimilated into the ocean model, which is also constrained by fluxes from ERA-20C
and a sea-surface temperature relaxation towards the HadISST2 product. Observations visibly impact the
fields from ORA-20C during the full record, but are only able to constrain large ocean climate signals, such
as ocean heat content, during the second half of the century. The lack of constraint obviously poses a chal-
lenge for coupled reanalyses. On the other hand, the coupled reanalyses may be able provide a more realis-
tic ensemble of realizations, where ocean and atmosphere observations can be exploited in a more
dynamically consistent manner. This is the motivation for CERA-20C, a reanalysis of the twentieth century
using the coupled data assimilation CERA. The CERA system simultaneously ingests atmospheric and ocean
observations in the coupled Earth system model used for ECMWF’s ensemble forecasts (Laloyaux et al.,
2016a). This approach accounts for interactions between the atmosphere and the ocean during the assimi-
lation process and has the potential to generate a more balanced and consistent Earth system climate
reconstruction. CERA-20C is the first 10 member ensemble of coupled reanalyses of the twentieth century.
The main features of some of the reanalyses produced at ECMWF are summarized in Table 1.

This article is organized as follows. In section 2, the dynamical coupled model and the observation data sets
used to produce CERA-20C are described. The modifications made to the data assimilation system to com-
pute a retrospective coupled analysis over the twentieth century are presented in section 3. The quality of
the atmospheric reconstruction of CERA-20C against other centennial reanalyses and independent observa-
tions is assessed in section 4. Different weather and climate signals are discussed in section 5 putting an
emphasis on the interactions between the different components of the Earth system. Section 6 presents
some preliminary results on the uncertainties that can be estimated from the ensemble reconstruction. Fur-
ther possible directions of research and development in coupled data assimilation are finally described in
section 7.

2. Model, Forcings, and Observations

CERA-20C relies on version CY41R2 of ECMWF’s Integrated Forecast System (IFS) which is used for medium-
range, monthly, and seasonal weather forecasting applications (ECMWF, 2016). Its capability includes not
only an atmospheric model but also coupling to several Earth system components: land (HTESSEL; Balsamo
et al., 2009), ocean wave (WAM; Komen et al., 2004), ocean (NEMO; Madec, 2008), and sea ice (LIM2; Bouillon
et al., 2009). All components are integrated into a single executable with a common time step loop,

Table 1
List of Selected ECMWF Reanalysis Data Sets Showing the Period Covered, the Observing System Used and the Different
Earth System Components Included in the Climate Reconstruction

Data set Period Type Ensemble Atmosphere Land Waves Ocean Sea ice

ERA-Interim 1979-present All obs. � � �

ORAS5 1975-present All obs. � � �

ERA-20C 1900–2010 Selected obs. � � �

ORA-20C 1900–2010 Selected obs. � � �

CERA-20C 1901–2010 Selected obs. � � � � � �
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sequentially calling each component and regridding fields as needed on the different model grids (Mogen-
sen et al., 2012a). The atmospheric model was modified as reported by (Hersbach et al., 2015a) to use
CMIP5 atmospheric forcing data to incorporate a better long-term evolution of climate trends over the
twentieth century. These terms include solar forcing, greenhouse gases, ozone, and aerosols. At the air-sea
interface, the sea surface temperature (SST) is relaxed toward the HadISST2 monthly ensemble product
(Titchner & Rayner, 2014) to limit the model drift while enabling the simulation of coupled processes. The
relaxation coefficient is set to 200 Wm22C21 which is equivalent to about a 2–3 day time-scale over a depth
of 10 m. The sea-ice concentration is not relaxed toward HadISST2 but its extension is constrained by the
SST. The HadISST2 data set is produced by the Met Office Hadley Centre. Observations used in HadISST2
include in situ SST measurements, AVHRR (Advanced Very High Resolution Radiometer) SST retrievals, and
retrievals from AATSR (Advanced Along-Track Scanning Radiometer) reprocessing. Both the radiative forcing
and the HadISST2 incorporate a proper long-term evolution of climate trends in the twentieth century, and
the occurrence of major events, such as El Ni~no Southern Oscillations and volcanic eruptions. The impact of
radiative forcing has been carefully studied in Hersbach et al. (2015a).

Century long coupled or uncoupled integrations with prescribed radiative forcing are the backbone of the
CMIP coordinated experimentation in support of IPCC reports. Century long coupled or uncoupled reanaly-
ses go a step further. The main purpose of assimilating observations is to add information about actual
weather events without deteriorating the model representation of low-frequency variability and change.
This is obviously a tremendous challenge, but an essential one to tackle if we want to progress on the
understanding of climate variability, change, and impacts. The ability to produce consistent reanalyses of
the climate system, reaching back in time as far as possible, relies then on the availability of past historical

observations. Within the ERA-CLIM project and its follow-up ERA-
CLIM2, large amounts of historical observations were rescued, com-
piled, processed, and made available to the reanalysis efforts. The
newly rescued data includes millions of historical surface and upper-
air observations (Stickler et al., 2014) which are embedded within the
international Atmospheric Circulation Reconstructions over the Earth
(ACRE) initiative to ensure exchange of information across various
projects (Allan et al., 2011).

The CERA-20C reanalysis does not assimilate the full observing system
at any time, but only observation types with a good enough spatial
and temporal coverage over the entire century are used. As in ERA-
20C, surface pressure and marine wind observations are assimilated in
the atmospheric model, from the ISPDv3.2.6 (Cram et al., 2015) and
ICOADSv2.5.1 (Woodruff et al., 2011) data sets. The International
Surface Pressure Databank (ISPD) is the world’s largest collection of
pressure observations (1768–2012) and consists of observations from
land stations, buoys, ships, coastal stations, and tropical cyclone best
track pressure reports. The International Comprehensive Ocean-
Atmosphere Data Set (ICOADS) provides surface marine data includ-
ing sea level pressure and wind speed over the past three centuries
(1662–2014) from buoys, ships, and coastal stations. These weather
observations are available in large numbers throughout the twentieth
century. Initially concentrated in the northern hemisphere, the global
coverage increases with time. The evolution of the number of obser-
vations assimilated per platform for surface pressure and marine wind
is plotted on the top and middle plots of Figure 1. ‘‘Best Track’’ obser-
vations from the International Best Track Archive for Climate Steward-
ship (Knapp et al., 2010) are plotted as bogus observations as they are
not always actual measurements but interpolated or approximated
from wind data. For the ocean component, observed subsurface tem-
perature and salinity profiles from the EN4.0.2 data set (A. Good et al.,
2013) with bias correction from Gouretski and Reseghetti (2010) are

Figure 1. Yearly count of assimilated observations per platform in CERA-20C:
(top) surface pressure, (middle) marine wind, and (bottom) ocean temperature
and salinity.
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assimilated. EN4 is a collection of subsurface profiles obtained across the global oceans from profiling floats,
moorings, and ships. The evolution of the number of temperature and salinity observations assimilated in
CERA-20C is plotted on the bottom plot of Figure 1. Although the data set is available over the period 1,900
to present, the first part of the century is barely observed. The observation coverage improves considerably
with the introduction in the last decade of the Argo global array of about 3,800 free-drifting profiling floats
that measures the temperature and salinity of the upper 2,000 m of the ocean. Although no oceanic satellite
data is assimilated in CERA-20C, the changes in the in situ component of the ocean observing system has a
substantial effect on the temporal variability of the ocean estimate (de Boisseson et al., 2017). No data
assimilation is performed for the land, ocean wave, and sea-ice components in CERA-20C. However, the use
of the coupled model ensures a dynamically consistent Earth system estimate at any time.

Climate reanalysis can be used to quality control the observations from the databanks as the data assimila-
tion system compares in a systematic way the observations with a physically consistent model. ECMWF cli-
mate reanalyses include the production of Observation Feedback Archives (OFA) designed from the outset
for user investigations (Hersbach et al., 2015b). This archive is organized by observation report type and
source. It contains the observations assimilated (surface pressure and marine wind) and other observations
that can be handled by the IFS model. This includes visual observations (present and past weather, visibility,
cloud-base height, amounts, and types) and observations that can be exploited quantitatively (surface pres-
sure tendency, air temperature and humidity, and seawater temperature). Upper-air observations have not
been processed and they are therefore not available in the OFA. The observation feedback includes in par-
ticular the background departure (observation minus background) and the analysis departure (observation
minus analysis) for many observations. For example, the ERA-20C feedback information was analyzed in
detail prior to CERA-20C, to detect stations reporting suspicious measurements. The CERA-20C feedback
information was analyzed similarly. This includes stations or ships with systematically too large background
departure, ships with unrealistic speed due to position errors and ships reporting observations over land, or
stations reporting constant values for a long-time (stuck sensor). The lists of stations were sent to the data
providers to improve the quality control of their data sets (to be used in future reanalyses). This feedback
process propagates the benefits of a better model and data assimilation system to better reanalyses, and
then to better quality-controlled observation data sets. Improvements in the global observing system,
advances in data assimilation methodology, and development of better forecast models yield a strong feed-
back loop. Ongoing activity in the field of reanalysis ensures that improvements in these areas will also
continue.

3. CERA-20C System

To produce the CERA-20C reanalysis, a new assimilation system (CERA) has been developed to simulta-
neously ingest atmospheric and ocean observations in the coupled Earth system model. The CERA system is
based on a variational method with a common 24 h assimilation window shared by the atmospheric and
ocean components (Laloyaux et al., 2016a). By extending the 4D-Var analysis window beyond the 6 or 12 h
norm of atmospheric Numerical Weather Prediction (NWP), more past and future observations in the atmo-
sphere and the ocean can be included following the idea of a retrospective analysis. The outer loop of the
variational algorithm integrates the coupled nonlinear forecast model, producing a four-dimensional state
estimate and observation misfits. The ocean and atmospheric increments are computed separately by two
different inner loops that minimize a linearized version of the variational formulation for the ocean and the
atmosphere. This outer-loop coupling means that air-sea interactions are taken into account when observa-
tion misfits are computed and when the increments are applied to the initial condition. By computing two
outer iterations in CERA-20C, ocean observations can have a direct impact on the atmospheric analysis and,
conversely, atmospheric observations can have an immediate impact on the analyzed state of the ocean
within the same assimilation cycle.

The requirements of NWP and reanalysis are different; several key elements of data assimilation algorithms
developed for NWP are suboptimal for retrospective analysis. NWP analysis systems are developed for the
present global observing network, with many observations that constrain the system in subtle ways, and
their absence can cause issues in earlier time periods. In the following, we review the major elements of the
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ECMWF operational atmospheric assimilation system and we describe the modifications made to produce a
retrospective analysis over the twentieth century.

3.1. Atmospheric Background Error
In any data assimilation scheme, the specification of background and observation errors is crucial to define
the relative weights that blend together the information from the measurements and from a prior informa-
tion of the forecast model (so-called background). In the context of extended climate reanalysis, information
about spatially and temporally varying background errors must be supplied. This information should reflect
the dependence of errors in atmospheric dynamics and more importantly account for the substantial
changes in observation data coverage that take place during the twentieth century.

Poli et al. (2013) demonstrated that it was feasible to use a 10 member Ensemble of 24 h 4D-Var Data Assimi-
lation (EDA; Bonavita et al., 2016) to quantify flow-dependent background errors over a century. The estimates
proved to be robust, with a good agreement between overlapping production streams. The EDA consists of
an ensemble of data assimilation systems that differ by perturbing observations, using different realizations of
the HadISST2 sea surface temperature fields and model physics. Observation errors are represented by pertur-
bations with statistics characterized by the observation error covariance matrix. The sea surface temperature
fields are not directly perturbed but different realizations are provided as part of the HadISST2 product. The
model physics is perturbed in a stochastic way, adding perturbations to the physical tendencies to simulate
the effect of random errors in the physical parameterizations. Flow-dependent ensemble information from
the EDA is incorporated into the atmospheric background-error covariance matrix

B5T21R1=2
b CR1=2

b T2T:

The diagonal matrix R1=2
b is the background-error standard deviation computed from the ensemble.

Because of the finite ensemble size and because all the error sources in the EDA are not properly repre-
sented, the background error standard deviation is calibrated and
smoothed. The background error correlation operator C is modeled in
wavelet space and is determined from a hybrid formulation blending
together climatological and current cycle forecast error estimates. The
matrix T maps the control vector used in the minimization of the 4D-
Var cost function to the model variables. The other components of
the Earth system are not perturbed explicitly with stochastics physics
but they receive the perturbed atmospheric forcing fields from the 10
member EDA.

The top plot of Figure 2 shows the background error standard devia-
tion R1=2

b for vorticity at the surface level computed from the 10
ensemble members for 1 January 1910 overlaid by the background
mean-sea-level pressure. Background standard deviation is smaller
in the Tropics and larger in active weather systems (e.g., low pres-
sure system over the Atlantic). The bottom plot of 2 shows the same
diagnostic for 1 January 2010. The background standard deviation
has reduced over time especially over regions with a better observ-
ing system. This is similar to results obtained by Poli et al. (2013).
However, these same results had also demonstrated that when no
upper-air observations were assimilated, the background errors esti-
mated by the EDA method were too large: this allowed spurious
increments to be added to the analysis, located very far away from
observations. These increments were shown to destroy the natural
ability of the model to create the realistic stratospheric trends shown
by ERA-20CM (Hersbach et al., 2015a). Learning from this prior expe-
rience, the background error standard deviation is reduced in CERA-
20C by a factor of 6 in the stratosphere. This prevents the 4D-Var
to compute significant corrections in the stratosphere and avoids

Figure 2. Background standard deviation for vorticity at the surface level
(1025s21) computed from the 10 ensemble members for (top) 1 January 1910
and (bottom) 1 January 2010. The contours represent the background mean
sea level pressure.
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spurious stratospheric climate signals caused by the vertical propagation of analysis increments related
to surface observations.

In the hybrid formulation used for the background error correlation C, the climatological forecast error esti-
mates are computed over summer and winter 2014 using a full observing system and get an 85% weight.
The 10 daily forecasts produced for each assimilation cycle receive a 15% weight. Giving a larger weight to
the small ensemble of 10 daily forecasts would introduce numerical instabilities in the computation of the
background error correlation. Figure 3 shows the horizontal correlations for surface pressure for 1 January
1910 (blue) and 1 January 2010 (green) for Frankfurt (left) and for Cape Town (right). Similar to results
obtained by Poli et al. (2013), the correlation distances for the background error are changing the synoptic
scales. They are decreasing over time as the observing network is getting denser. Consequently, the observa-
tions in the year 2010 have a shorter radius of influence on the analysis than in the year 1910. The variational
EDA reacts to the observation coverage as follows. In the beginning of the century, a poor observation cover-
age means that the observations are used to constrain the large-scales features, with little emphasis on
small-scale increments. At the end of the century, a denser observation network allows small-scale features
to be extracted from the observations (for the correlation value 0.4, the length scale is reduced for Cape
Town by 20% over the century). The comparison between the horizontal correlation in Frankfurt and in Cape
Town shows the impact of the better observing system over Europe compared to the Southern Hemisphere
(for the correlation value 0.4, length scale in Frankfurt is half the size of that in Cape Town). This result is
important as it confirms that the EDA is a powerful analysis method to cope with large changes in amounts
of observations, allowing observations to have different scales of impact depending on their availability (Poli
et al., 2013). This fully flow-dependent background error in CERA-20C is a major improvement as compared
to the publicly-released ERA-20C deterministic reanalysis. Indeed, the underlying ensemble product in ERA-
20C was not released having spurious stratospheric climate signals caused by the vertical propagation of
analysis increments related to surface observations (see Poli et al., 2013, 2015, for more details).

3.2. Atmospheric Observation Error
Specifying a priori the observation errors over the entire twentieth century is not straightforward since mea-
surement processes for the different platforms and representativeness errors (arising from the variability of
the observed field at scales smaller than those resolved by the dynamical model) are not well known, and
observation practices changed a great deal. Generally, greater automation occurred for all parameters, from
reports of time and location to the observed geophysical variable itself, thereby reducing the contribution
of human errors in each of them. The initial ensemble realization of ERA-20C used constant, observation
errors over time, and the deterministic version used a similar approach, with values for the different plat-
forms are given in Table 2. These error estimates included observation timing error and observation location
error. The ensemble production (Poli et al., 2013) demonstrated by analysis of the OFA that these errors
should in fact be considered as time-dependent. Indeed, location errors are very likely greater for all marine
observations in the early part of the century, as compared to the 1990s when the Global Positioning System
(GPS) started to generalize. It is possible to estimate the observation error a posteriori, using the method

Figure 3. Horizontal correlations for surface pressure for 1 January 1910 (blue) and 1 January 2010 (green) for (left) Frank-
furt and for (right) Cape Town.
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proposed by (Desroziers et al., 2005). This method assumes that the background and the observation errors
present different correlation structures. This diagnostic was computed from the ERA-20C OFA (Poli et al.,
2013). The results could not be applied in the ERA-20C deterministic system, as shown by (Poli et al., 2015),
as this would have required reassessing time-varying background errors with an ensemble. However, the
results (Poli et al., 2015) were used as in CERA-20C. The linearly time-varying observation errors used in
CERA-20C are summarized in Table 2.

Data assimilation diagnostics can be computed from the different statistics stored in the OFA. One can
form statistics of the expected departures at the beginning of the analysis window, by computing the
square root of the sum of assumed observation error squared and background error squared. They can
then be compared with the actual root mean square of background departures at the beginning of the
window. Figure 4 shows both quantities for surface pressure observations reported at station level in
the first 3 h of the assimilation window. In ERA-20C (left plot) the expected departure is much smaller
than the actual departure during the first part of the century, meaning that background and/or observa-
tion errors were underestimated. In CERA-20C, the new specification of observation error (1.6 hPa
instead of 1.08 hPa in 1900) with a consistent flow-dependent background standard deviation shows a
better agreement between the expected and the actual departure for the whole century (right plot). The
larger background departure at the beginning of the century in CERA-20C is a consequence of the less
confidence in the observations. The drop in the actual background departure due to the sudden large
increase of observations in the 1930s’ happens at the same time in the predicted departure. As the
observation errors are reducing linearly over time, this can only be explained by the EDA system which
captures well the changes in the observing system. This illustrates that the specification of the back-
ground error in CERA-20C is better and more consistent compared to the deterministic production of
ERA-20C.

3.3. Variational Bias Correction
Biases in surface pressure and mean sea level pressure observations are corrected by the Variational Bias Correction
(VarBC). In this formalism, observation bias is estimated from a bias model based on a small set of bias parameters

and data are stratified into groups where observations share the same set
of bias parameters (Dee & Uppala, 2009). In ERA-20C and CERA-20C, the
bias model for surface pressure and mean sea level pressure observations
depends only on the pressure itself (Poli et al., 2013). Each physical station
or platform forms its own bias group in which the bias estimate can
evolve independently. This is quite a different situation from operational
NWP, where typically thousands of satellite observations all share the
same group, but this reflects the issue of metrology and calibration: each
barometer poses a distinct problem, similar to a single satellite sensor.

The bias parameters are updated variationally in the 4D-Var assimila-
tion, as additional parts of the analysis control vector. The level of
confidence on the bias correction is controlled by an extra term in
the 4D-Var cost function that includes a bias error covariance matrix
which penalizes for deviations from the background bias parame-
ters. This bias error covariance matrix is kept constant over time and

Table 2
Specification of the Observation Errors for the Different Platforms in ERA-20C (deterministic) and CERA-20C

Observation type ERA-20C CERA-20C

Surface pressure from land stations 1.08 hPa From 1.6 hPa in 1900 to 0.8 hPa in 2010
Surface pressure from ship 1.46 hPa From 2.0 hPa in 1900 to 1.2 hPa in 2010
Surface pressure from tropical cyclone bogus 1.56 hPa 2.0 hPa throughout the century
Surface pressure from buoys 0.94 hPa From 1.0 hPa in 1973 to 0.8 hPa in 2010
Ten-meter wind component from ship 1.5 m/s 2.2 m/s throughout the century
Ten-meter wind component from buoys 1.33 m/s From 1.7 m/s in 1973 to 1.4 m/s in 2010

Figure 4. Monthly time series of Root Mean Square of observation minus
background actual departures (blue) and predicted departures (red) in (left)
ERA-20C and (right) CERA-20C, for assimilated observations of surface pressure
reported globally at stations in the first 3 h of the assimilation window.
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determines the reaction speed of the variational bias correction. The bias standard deviation error has been
tuned to have a fast enough update when there is a sharp change in the observation bias and to have a
slow enough update for stations with stable biases. The approach used in ERA-20C was slightly different as
the bias computation was performed before the 4D-Var assimilation. This alternative aims to avoid any
interaction with the model background and to have a better control on the response time of the observa-
tion bias.

3.4. Quality Control
Quality control (QC) of observations is an important component of any data assimilation system (Lorenc &
Hammon, 1988). Observations suffer from random measurement errors, and sometimes gross errors due to
technical, reading or transmission problems. The goal of QC is to ensure that only correct observations are
used, and that erroneous observations are discarded from the analysis process. It has long been recognized
that a good quality control process is required because adding erroneous observations to the assimilation
can lead to spurious features in the analysis.

The first QC step is the blacklist. It includes a set of predefined rules to reject observations. CERA-20C bene-
fits from an improved blacklist based on information gained from the ERA-20C OFA. From hundreds of sta-
tions reporting spurious or constant measurements over time assimilated in ERA-20C were blacklisted in
CERA-20C. During the second QC step, preferences are assigned to remove redundant information within a
report. The rules, as employed for operational NWP, are as follows: a surface pressure observation is pre-
ferred to a surface geopotential observation and a pressure observation reported at the station level is pre-
ferred to a pressure observation reported at sea-level (as mean sea level pressure over land is a quantity
that is calculated using some assumptions on the temperature profile). The third QC step is the so-called
background (or first-guess) check, which rejects any observation whose actual departure from the back-
ground value is more than 3 times larger than the expected departure (square root of the sum of observa-
tion error squared and background error squared). Finally, a variational quality control (Anderson &
Jarvinen, 1999) using the Huber norm adjusts the observation weight within the assimilation (Tavolato &
Isaksen, 2015). Data with a large departure are then assigned a smaller weight than data with a small depar-
ture. This approach reduces the issues caused by inclusion of outlier observations in the analysis step.

3.5. Ocean Assimilation
No major modification has been made to the ECMWF operational ocean assimilation system to produce
CERA-20C, except that the ocean model bias correction scheme has not been applied. This system employs
the NEMOVAR three-dimensional variational data assimilation system (3D-Var), using the First-Guess at
Appropriate Time (FGAT) approach (Mogensen et al., 2012b). Although CERA-20C has an ensemble of ocean
reanalyses, the ensemble information is not used in the background errors. Therefore, there is no need to
tune the background errors, apart from accounting for the shorter assimilation window. A substantial differ-
ence with respect to the other operational ECMWF ocean reanalyses (ORAS4 and ORAS5) is the lack of
ocean model bias correction in CERA-20C. This bias correction scheme aims to correct for temperature and
salinity biases in the extra-tropical regions and applies a pressure correction in the tropical regions during
the nonlinear model integration (Balmaseda et al., 2007). The bias term is the sum of an offline bias esti-
mated as the monthly climatology of the ocean assimilation increments from a preproduction run over a
well-observed recent period (1989–2008) and an online bias which is updated each analysis cycle (Mogen-
sen et al., 2012b). The bias of the unforced ocean model is not necessarily the same as the bias of the cou-
pled model. Since the iterative estimate of the offline bias in coupled mode is prohibitive, the bias
correction was not used in CERA-20C for consistency reasons.

3.6. Data Set
The production of climate reanalyses requires large computing and archiving resources. To produce the
CERA-20C data set in a reasonable amount of time, the period 1900–2010 was divided into 14 different
streams, each covering 10 years. Each production stream was initialized from the uncoupled ERA-20C and
ORA-20C reanalyses. Initializing the slow component of the earth system (ocean, sea-ice, and land) to a con-
tinuous a priori reanalysis should in principle prevent discontinuities in the ocean temporal evolution due
to drifts in the coupled system. The first two years of each production stream were used for spin-up (only 1
year of spin-up for the first stream) to produce the final climate data set for the period 1901–2010. The com-
putation footprint of CERA-20C on ECMWF’s high-performance computing facility is significant, with 7
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months of production using 20,000 cores, which represents 5% of the total resources. About 500,000 varia-
tional problems had to be solved at a pace of one every 30 s and processing up to 5,000,000 observations.

The CERA-20C product describes the spatiotemporal evolution of the atmosphere (125 km horizontal grid
with 91 levels in the vertical, between the surface and 0.01 hPa), the land-surface (125 km horizontal grid
with four soil layers), the waves, the ocean (110 km horizontal grid with meridional refinement at the equa-
tor and 42 vertical levels) and the sea ice. The temporal resolution is 3 h. CERA-20C provides 10 ensemble
members and users can access precomputed ensemble mean and spread. Two sets of monthly means are
available: synoptic monthly means and monthly means of daily means. In addition, the Observation Feed-
back Archives (OFA) which contain feedback information is also available. This represents in total more than
1,600 terabytes of data archived in ECMWF’s MARS archiving system.

4. Synoptic and Upper-Air Evaluation

4.1. Representation of Tropical Cyclones
One potential value of historical reanalyses lies in their ability to study weather extremes, since extremes
are rare and satellite-era reanalyses are too short to represent a long enough sample for climate studies.
While midlatitude storms, heat waves or cold-air outbreaks are often well-represented in regions with dense
observational coverage (Bronnimann & Luterbacher, 2012; Donat et al., 2013; Messori et al., 2016), this is not
always the case for tropical cyclones, which are difficult to model and not well-constrained by observations.

In order to study in detail the representation of hurricanes in surface-only reanalyses, we compared two
similar hurricanes near the beginning and end of the CERA-20C period: the Galveston hurricane in 1900 and
the Katrina hurricane in 2005. The mean sea level pressure analyses from 20CRv2c and CERA-20C have been
plotted in Figure 5 overlaid by the analysis departure (analysis - observation) at locations where observa-
tions have been assimilated. The Galveston hurricane appears as a deep cyclone in 20CRv2c (top left) while
it is clearly missed in CERA-20C (middle left). The study of the observation feedback archive reveals why hur-
ricanes are represented differently in the two reanalyses. The lowest observed pressure values presented to
the assimilation systems are mostly those from the so-called ‘‘Best Track’’ observations from the Interna-
tional Best Track Archive for Climate Stewardship (IBTrACS) (Knapp et al., 2010). These observations from
the IBTrACS data set are not always actual measurements, some are interpolations or approximations based
on wind data (Compo et al., 2011). In CERA-20C and ERA-20C systems, a lot of the Best Track information is
rejected by the system in the first guess check since the difference between the background and the observa-
tion is too large. All the Best Track observations have been rejected in CERA-20C during the Galveston hurri-
cane. Conversely, in the 20CRv2c system, the Best Track data are allowed to bypass the usual quality control in
order to avoid their rejection. The assimilation of the four Best Track observations in 20CRv2c represented by
the circle markers in Figure 5 is sufficient to produce an intense hurricane with strong winds and heavy precipi-
tation. The situation is different for Katrina as the hurricane appears in both reanalyses (990 hPa in 20CRv2c
and 992 hPa in CERA-20C). The Best Track values (down to 915.2 hPa) are still rejected by the CERA system as
they are too far from the background, but there are many other observations that inform the assimilation sys-
tems about the hurricane in this case. The 20CRv2c assimilates the Best Track data, but a large amount of the
data presented to the 20CRv2c system is not assimilated but thinned-out by the system (Compo et al., 2011). In
this procedure, observations that have no strong effect on the ensemble spread are not assimilated, such that
the fraction of assimilated observations decreases from 98% in 1891 to 32% in 2005.

Forcing the CERA system to assimilate the Best Track observations has been tested by bypassing the first
guess check and the variational quality control, and the results are shown in the bottom row of Figure 5.
With this modification, the hurricane Galveston is represented with a lowest mean sea level pressure equal
to 974 hPa (968 hPa in 20CRv2c). However, the size of the hurricane is too large and the fit to the other
observations in the vicinity of the hurricane is degraded. In a poorly observed period, the background error
covariance constrains the large-scales features, spreading too much the information over space with little
emphasis on small-scale increments. The forced assimilation of the Best Track observations for Katrina has
deepened the hurricane in the CERA system from 992 to 984 hPa (990 hPa in 20CRv2c) improving slightly
the fit to the other observations.

This study shows that reproducing hurricanes from the operational NWP 4D-Var in a surface-only reanalysis
remains a challenge and that several steps in the procedure (e.g., first-guess checks, variational quality
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control, assignment of observation error, thinning out of observations) are important. Bypassing the first
guess check for Best Track observations does not give satisfactory results in CERA as it degrades the fit to
the other observations. Some work is ongoing to improve the way the background error covariance matrix
is spreading the information in space, allowing smaller-scale adjustments.

4.2. Upper-Air Evaluation
Since CERA-20C and 20CRv2c only assimilate surface data, any upper-air observations can be used for inde-
pendent evaluation. The time shortly after the International Geophysical Year (1957–1958) is particularly
useful as the global radiosonde network is relatively dense and can provide independent conventional
upper-air observations. Figure 6 shows the monthly standard deviation of the analysis departure for CERA-
20C and 20CRv2c ensemble means with respect to unadjusted temperature observations from radiosondes
at 700 hPa, averaged over years 1959–1960. CERA-20C outperforms 20CRv2c in the northern extratropics
(30–608N) with a standard deviation around 1.6K compared to 2.2K in 20CRv2c. The performance of the two
reanalyses looks more similar in the Tropics and over the Southern Ocean region. Similar conclusions can
be drawn at 200 hPa. The analysis departure bias in CERA20C are smaller in most regions (not shown), but
the picture is less clear in this respect since radiosonde temperature observations can have substantial
biases themselves (this is the reason why standard deviation is preferred here over root-mean-square error).

One way to evaluate the quality of the ECMWF reanalyses is to compare the quality of 10 day forecasts ini-
tialized from each reanalysis. Figure 7 shows the anomaly correlation coefficient of NH geopotential height

Figure 5. Mean sea level pressure analysis (contours, 2 hPa spacing) from (top) 20CRv2c, (middle) CERA-20C control mem-
ber, and (bottom) CERA-20C control member where the assimilation of Best Track observations have been forced, for
(left) the Galveston hurricane and (right) the Katrina hurricane. Symbols indicate the pressure observations that have
been assimilated to produce the analysis (circles for the Best Track observations, squares for the others) and their colors
show the analysis departure (analysis - observation) in hPa.
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at 500 hPa (left), SH geopotential height at 500 hPa (middle), and tropics temperature at 700 hPa (right) in
CERA-20C, ERA-20C, and ERA-Interim. The scores are aggregated over 1 March 2010 to 1st June 2010 and
the ECMWF operational analysis is used as verifying truth. The 10 day forecasts produced in each reanalyses
are all initialized at 00UTC but they are based on different assimilation windows (21UTC to 21UTC in CERA-
20C, 9UTC to 9UTC in ERA-20C, 15UTC to 03UTC in ERA-Interim). The forecasts for the CERA-20C system
therefore benefit from an additional 12 h of observations compared to ERA-20C and 18 h of observations
compared to ERA-Interim. This advantage is taken into account by shifting the ERA-20C and ERA-Interim
curves by 12 h and 18 h to get a fair comparison. The improvement in CERA-20C compared to ERA-20C is
around 0.5 day at the 70% anomaly correlation threshold and it comes from the use of a newer IFS model,
the EDA technique and the ocean coupling in the analysis and forecast. ERA-Interim has better scores since
it assimilates upper-air and satellite observations, which improves the geopotential height and temperature
analysis.

The impact of the ocean coupling in the CERA-20C reanalysis has been assessed separately by running an
extra experiment where the ocean and sea-ice coupling of the CERA-20C system has been switched off
(CERA-20C-nocoup). In this uncoupled version, sea surface temperature and sea ice are prescribed using the
monthly HadISST2 product. Figure 8 shows the normalized difference in the anomaly correlation coefficient
between CERA-20C and CERA-20C-nocoup for NH geopotential height at 500 hPa (left), SH geopotential
height at 500 hPa (middle), and the tropics temperature at 700 hPa (right). A positive value means that the
ocean coupling increases the anomaly correlation. Ocean and sea-ice coupling improves the anomaly corre-
lation for 500 hPa geopotential height in the Southern hemisphere (mostly covered by oceans). In the
Tropics, it improves the anomaly correlation for the temperature analysis and forecast up to day 5. One
explanation of the small degradation in the Northern hemisphere is the position of the Gulf stream which is
located too North compared to the HadISST2 product. The actual impact of ocean and sea-ice coupling dur-
ing the assimilation might be difficult to assess using the overall statistics presented in Figure 8. The quality

Figure 6. Monthly standard deviation of the analysis departure for (left) CERA-20C and (right) 20CRv2c ensemble means with respect to unadjusted temperature
observations from radiosondes at 700 hPa, averaged over years 1959–1960.

Figure 7. Anomaly correlation coefficient of (left) NH (90� to 30�) geopotential height at 500 hPa, (middle) SH (230� to 290�) geopotential height at 500h Pa, and
(right) TROPICS (30� to 230�) temperature at 700 hPa in ERA-Interim (red), ERA-20C (grey) and CERA-20C (black). Scores are aggregated over 1 March 2010 to 1
June 2010 and the ECMWF operational analysis is used as reference.
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of medium-range forecasts in the northern extratropics has generally improved by around 1 day (about
20%) per decade (Magnusson & Kallen, 2013; Simmons & Hollingsworth, 2002). Most of the improvement
likely comes from the flow of smaller developments which might have an impact of less than 30 min of
forecast skill, or about 0.5%, which is hard to detect with forecast verification. For this reason, statistical eval-
uation must come from case studies that look at the performance of the ocean coupling for specific
weather situations such as Tropical cyclones (Laloyaux et al., 2016b).

5. Weather and Climate Signals

5.1. Ocean Heat Balance
One of the benefits expected from a coupled assimilation system is a more consistent treatment of the air-
sea interface. When decoupled, the ocean and atmospheric systems are fed by boundary conditions that do
not take into account ocean-atmosphere feedbacks. In ERA-20C, the atmospheric lower boundary condi-
tions come from the HadISST2 sea-surface temperature and sea-ice monthly analysis. Poli et al. (2015)
showed that atmospheric temperature increments in ERA-20C are not unbiased and that their impact on
the atmospheric heat budget is compensated by energy fluxes at the top of the atmosphere and at the sur-
face (over land and ocean). In ORA-20C, the ocean receives the surface fields from ERA-20C as upper bound-
ary conditions. Those fields are fixed and impacted by the atmospheric energy balance and they cannot
adjust to the ocean model behavior. In the early twentieth century, the ocean heat content variability is
driven by relatively stable air-sea fluxes. Like in ERA-20C, the ocean temperature increments that work to
keep the ocean close to the observed state from the 1950s onward are not unbiased and their impact on
the ocean energy budget is compensated by energy fluxes at the air-sea interface. The resulting net heat
fluxes over the ocean in ORA-20C show a negative trend from the 1940s onward that responds to a growing
positive temperature increment (Figure 9), highlighting the inconsistencies between ocean and atmosphere
at the air-sea interface. ERA-20C and ORA-20C are clear examples of the harm that uncoupled analysis sys-
tem can cause on the energy balance of the climate system. In CERA-20C, the ocean and the atmosphere
communicate hourly through the air-sea coupling at the outer-loop level of the variational method.
Changes in the state of the atmosphere directly impact the ocean properties and vice versa and both

Figure 8. Normalized difference in the anomaly correlation coefficient between CERA-20C and CERA-20C without ocean and sea-ice coupling for (left) NH geopo-
tential height at 500 hPa, (middle) SH geopotential height at 500 hPa, and (right) TROPICS temperature at 700 hPa. A positive value means that the ocean coupling
increased the anomaly correlation coefficient. Purple bars represent the 95% confidence interval. Scores are aggregated over 1 March 2010 to 1 June 2010 and
the ECMWF operational analysis is used as reference.

Figure 9. Time series of ORA-20C and CERA-20C control member values of the global average of (left) net air-sea heat
fluxes and (right) the integrated ocean temperature increment.
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systems adjust to each other. On average, heat flux at the air-sea interface and ocean temperature
increments in CERA-20C oscillate around zero (respectively, 0:1561:11 W=m2 and 20:1161:9 W=m2 in
CERA-20C; 21:6261:89 W=m2 and 1:662:32 W=m2 in ORA-20C), suggesting a more consistent energy
balance between ocean and atmosphere.

5.2. Ocean Heat Content
The evolution of ocean heat content over the twentieth century is of particular interest as it has been identi-
fied in several studies as an indicator of ocean heat uptake, a process that is relevant to climate studies. In
CERA-20C, time series of heat content show discontinuities between streams resulting from the model drift
from its initial state (Figure 10). The model drift reflects the fact that the initial conditions from ERA-20C and
ORA-20C used to initialize the different production streams are inconsistent with the coupled model’s natu-
ral state. The origin of the drift remains unknown so far. The complexity of the system makes it very difficult
to point toward a single explanation and this question remains open to further investigations. In the early
twentieth century, when the uncertainty in the state of the ocean is high and the ocean model is poorly
constrained by observations, the ocean component of CERA-20C drifts toward its preferred state. As the
observing system grows, the uncertainty and the drift are reduced. The relatively well-observed upper
ocean adjusts faster than the ocean interior, where the timescales of ocean processes are particularly slow
and the observational constraints are very small. Further work is needed to understand and reduce the
model drift so that the initial conditions and the ocean model behavior are more realistic in poorly observed
periods and areas.

5.3. Mean Sea Level Pressure Trends
An issue with the general circulation in the southern hemisphere has been found in ERA-20C and 20CRv2c
(Poli et al., 2013, D. Bromwich, personal communication, 2013). In these reanalysis, the time series of mean
sea level pressure (MSLP) decreases significantly between 1900 and 1950 over the Antarctic region, leading
to a substantial strengthening of the polar vortex in the first half of the twentieth century (Figure 11). This
spurious climate signal has been investigated during the preparatory work for the CERA-20C production.

In any data assimilation scheme, the specification of observation and background errors is crucial as it
defines the weights used to blend together the information from the measurements and from the model. It
has been found that the observation error for pressure observations specified in ERA-20C (Table 2) are too
small at the beginning of the century, giving too much weight to the observations located in the subtropi-
cal high pressure belt. Large positive MSLP increments over the unobserved Antarctic region are generated

Figure 10. Time series of the global average ocean heat content (J=m2) in the CERA-20C ensemble for the (top left) upper
300 m, (top right) the upper 700 m, and (bottom left) the entire water column. The solid lines are the ensemble mean and
the shading shows the ensemble standard deviation.
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as the assimilation fits the observations by adjusting the flow where it
is the least constrained. This is illustrated on the right plot of Figure 12
for the year 1924. The systematic positive increments computed over
the years result in too high MSLP values in the analysis. This behavior
disappears when the observing system becomes denser in the 1950s,
with the first SYNOP stations in Antarctica and more observations
from ships in the Antarctic Circle which better constraint the assimila-
tion system. For the production of CERA-20C, observation errors have
been reviewed and are now time-varying to make them more realistic
(Table 2). The larger observation error at the beginning of the century
increases slightly the analysis departure with pressure observations,
but prevents large positive increments over the Antarctic region (left
plot of Figure 12). As a result, the CERA-20C ensemble mean looks
more realistic with better consistency in the climate trends. The larger
ensemble spread at the beginning of the century reflects the larger

uncertainties in the climate reconstruction as the region is poorly observed before the 1950s.

5.4. Precipitations and Droughts
CERA-20C and ERA-20C precipitation extremes are compared to the gridded GPCC Full Data Daily product
(FDD Schamm et al., 2014) which is based on gauge data. The index plotted in Figure 13 is the highest num-
ber of Consecutive Dry Days (CDD) over the 1988–2010 period for the three data sets (Tank et al., 2009). A
threshold of 1 mm/d is used to define a dry day. The CDD extreme index is an important measure of the
aridity of regions and thus an important indicator for droughts. There is a overall good agreement between
CERA-20C and ERA-20C (which does not assimilate any precipitation measurement) and the gridded obser-
vation product. The longest periods without precipitation occur especially in the desert areas, especially in
the Sahara and Atacama deserts (CDD> 7 years). In these dry areas, the differences between the reanalyses
are mainly in the extent (e.g., Sahara) or magnitude and position (e.g., North Australia). Differences in rainfall
patterns based on the orography are particularly evident in Congo, where CERA-20C outperforms ERA-20C
being more consistent with the GPCC-gridded observations.

Figure 12. Mean sea level pressure increments (shading) for the year 1924 in (left) ERA-20C and (right) CERA-20C. Dots
and triangles represent the analysis departure with mean sea level pressure observations and surface pressure observa-
tions, respectively.

Figure 11. Time series of mean sea level pressure (MSLP) for the latitudes
908S–608S averaged over the period September–November each year.
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5.5. Sea Ice
Ocean-sea ice interactions through the LIM2 model have only recently been included in ECMWF’s coupled
model. ORA-20C provides a first record of sea-ice conditions for the twentieth century in ocean-only mode
while CERA-20C is the first application allowing these interactions in coupled mode on an interannual time-
scale. During the course of the production, CERA-20C sea-ice component showed a lack of summer melting,
leading to the accumulation of Arctic sea ice over the years. By the end of a CERA-20C stream, the sea-ice
thickness is over 5 m in most of the Arctic basin, more than twice the expected average of 2–2.5 m, as seen
in ORA-20C (Figure 14). By constraining the ocean surface temperature toward observations, the SST relaxa-
tion was nevertheless able to keep the sea-ice extent under control. Further investigations were conducted
using the ECMWF coupled model and it was found that the configuration of the sea-ice coupling with the
atmosphere was not optimal. The main issue was the sea-ice temperature information from LIM was not
transferred correctly to the atmosphere. This problem was fixed and tested in coupled model experiments
that showed a more realistic behavior closer to the ocean-only mode (right plot of Figure 14). Sea-ice inter-
actions with the ocean and the atmosphere are highly sensitive processes and will need to be monitored
carefully for future reanalysis.

5.6. Seasonal and Subseasonal Coupled Processes
It is important for a product such as CERA-20C to capture seasonal and subseasonal coupled processes as
they will have a crucial impact for climate monitoring and predictability studies. The El Ni~no-Southern Oscilla-
tion (ENSO) is the principal mode of variability that impacts both atmosphere and ocean on seasonal to inter-
annual timescales. A multivariate ENSO index (MEI) is estimated using sea level pressure and SST from CERA-
20C and ERA-20C following Wolter and Timlin (2011). Combined EOFs of SST and MSLP are computed from
bimonthly-averaged time series over the Tropical Pacific. The first EOF captures the ENSO signal and the corre-
sponding principal component is the MEI (Figure 15). Both ERA-20C and CERA-20C agree very well with the
observation-based index from Wolter and Timlin (2011) - with correlation of 0.88 and 0.89, respectively, show-
ing that CERA-20C is doing a reasonable job at capturing the ENSO signal at the air-sea interface.

Figure 13. Longest period of consecutive dry days over the 1988–2010 period for (left) CERA-20C, (middle) ERA-20C, and (right) the GPCC gridded observations.
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Capturing the signature of the ENSO events in the ocean subsurface is also relevant as predictability studies
based on coupled reforecasts will use initial conditions from coupled reanalyses such as CERA-20C. Figure
16 shows the upper ocean heat content (0–300 m) in the Equatorial Pacific (58S–58N). CERA-20C compares
very well with ocean-only reanalyses ORA-20C (de Boisseson et al., 2017) and ORAS4 (Balmaseda et al.,
2013) in the well-observed period, capturing the sequence of warming/cooling associated to the major
ENSO events of 1972–1973, 1982–1983, and 1997–1998. The early decades do not show clear signals in the
ocean subsurface, confirming the general ENSO-weakness during the early to mid-twentieth century
described by Wolter and Timlin (2011) with the exception of the 1940–1942 El Ni~no.

Capturing subseasonal coupled processes also matters for predictability studies. In this paper, we focus on
the Tropical Instability Waves (TIW) that are said to play a part in ENSO interannual variability and impact
ENSO predictability (An, 2008; Ham & Kang, 2010). TIWs are westward-propagating features of SST mostly
visible in the eastern equatorial Pacific in the 18S–38N band. These waves have wavelengths of 1,000–
2,000 km, periods of 15–30 days, and phase speeds of about 0.5 m/s (Willett et al., 2006). The TIWs are char-
acterized by a very close relationship between SST and wind stress. In the following, SST and surface wind
stress fields are spatially high-pass filtered to attenuate wavelength longer than 2,000 km as in Chelton
et al. (2001). A temporal band-pass filter (centered on the window 10–60 days) is also applied to focus on
the period of the TIWs. As TIWs are more intense in La Ni~na periods, the filtered SST and wind stress are
plotted in Figure 17 at 18N in the Pacific for the period 1973–1974. The atmosphere-ocean coupling in
CERA-20C allows the system to capture the westward propagation of the TIWs. Filtered SST (contours) and
wind stress (shading) are in phase. Positive SST values (plain contours) trigger stronger wind stress while
negative SST values (dashed contours) coincide with weaker wind stress. By contrast, ERA-20C being forced

by a monthly SST analysis cannot represent the atmospheric response
to a signal that is not present in its lower boundary conditions. The
extent to which the TIW signal propagates in the vertical and how it
interacts with the general atmospheric circulation would need further
investigations that are beyond the scope of this study.

6. Uncertainties

CERA-20C provides a 10 member ensemble reconstruction for all
parameters and levels over a climate period (in this case, the twenti-
eth century). Ensemble generation is based on the EDA system which
explicitly accounts for errors in the observational record and in the
forecast model. The information from the ten members is used during
the assimilation to compute a flow-dependent background error,
which determines how to spread the information from observations
in space. The ensemble technique also aims to provide an indication
of the confidence we can have in the reanalysis product. The

Figure 14. Arctic sea-ice thickness in March 1932 from (left) CERA-20C, (middle) ORA-20C, and (right) a coupled model
run with new sea-ice coupling.

Figure 15. Multivariate ENSO index computed as in Wolter and Timlin (2011)
for SST and MSLP. ERA-20C is in black, CERA-20C in red and the index estimated
from observational products by (Wolter & Timlin, 2011) is in green (rescaled for
comparison).
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ensemble standard deviation for temperature over 608S–608N is equal
to 1.08C at 1,000 hPa in 1920 and reduces to 0.48C in 2005 (Figure 18).
The ensemble spread in CERA-20C gradually decreases over time,
which implies a higher confidence in the reanalysis as more observa-
tions become available. The reanalysis ensemble spread is supposed
to represent the error of the reanalysis ensemble mean. It should ide-
ally be equal to the root-mean-square error (RMSE) of the ensemble
mean compared to the true atmospheric state. This has been verified
for the year 2005, when ERA-Interim provides a good proxy for the
truth as it assimilates all types of observation at a higher resolution.
Maps of the ensemble spread and of the RMSE show very similar hori-
zontal structures, which means that the EDA correctly captures where
the uncertainties are (not shown). However, the RMSE of CERA-20C is
about twice as large as the CERA-20C analysis ensemble spread. This
global offset between the spread and RMSE can be seen in the vertical
profiles (Figure 18). CERA-20C is thus overly confident in the data
compared to the actual error. Figure 19 shows a similar study but in
observation space using the independent upper-air temperature
measurements from radiosondes as another proxy for the truth. One

can see a good correspondence between the CERA-20C ensemble spread at the observation locations and
the monthly standard deviation of analysis departures averaged over the period 1959–1960, although the
ensemble spread is globally too small by a factor of 2. To improve the uncertainty estimations in future
reanalysis, the size of the ensemble and the way the perturbations are generated in the different members
when the EDA system is used will require further investigation to reduce the current offset between the
ensemble spread and the actual error.

The CERA-20C ensemble spread for the wave component has been assessed using the same methodology.
The left plot of Figure 20 shows the ensemble mean for significant wave height against all available in situ
data for a 2 year period (2005–2006). The observations are mostly from moored buoys, with the exception

Figure 16. Equatorial Pacific upper 300 m ocean heat content anomalies with
respect to 1958–2010. ORA-20C ensemble (10 members) are in light red, with
the ensemble mean in red. CERA20C ensemble (10 members) in grey, with the
mean in black. An OHC increase of 1 3 10 8 J=m2 corresponds to a tempera-
ture increase of 0:08

�
C averaged over the top 300 m.

Figure 17. Hovmoller time series of spatially high-passed filtered SST (in C, contours) and wind stress (in N=m2, shading)
at 18N in the eastern Pacific from April 1973 to April 1974. SST contours range from 21

�
C to 1

�
C every 0:25

�
C. Positive

(negative) contours are plain (dashed). CERA-20C represents the Tropical Instability Waves (TIWs) thanks to the ocean
dynamics and the atmosphere is responding accordingly with the surface wind stress sensitive to the ocean TIWs.
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of platform data from the Gulf of Mexico and the North Sea. The qual-
ity control procedure and collocation method are described in Bidlot
(2017) and Bidlot et al. (2002). In this validation against observations,
there is no special account of the uncertainty and representativeness
error of the observations as demonstrated in Saetra and Bidlot (2004).
Generally, the quality of CERA-20C wave heights is rather good, with
exception in nearshore areas, with a marked degradation, usually
associated with a tendency to underestimate (not shown). The coarse
resolution of the wave model component as well of the forcing wind
fields are the main cause. The right plot of Figure 20 shows the mean
of the ensemble spread for significant wave height at the same loca-
tions as the in situ observations. As found in the atmosphere, the
spread of the CERA-20C ensemble as an estimate of the error of the
ensemble mean tends to be too small (note the change in color scale
by a factor of 4). The mean spread is at least a factor of 4 lower and
fairly uniform. A similar analysis was also carried out for the surface
10 m winds. It was found that the mean spread is too low by a factor
of 2–3, more in line with what was found in the atmosphere. It is
worth noting that the spread in the waves is only generated from the
impact of the spread in the forcing wind as there is no specific uncer-
tainty modeling in the wave model. Too low spread in the winds will
yield too low spread in the waves, knowing that at first order, the
wind waves generation is proportional to the square of the wind
speed. The significant wave height is an integral parameter that
includes all contributions from the different wave components,
including the swell components generated from storms across the

ocean basins days earlier. The CERA system does not necessarily propagate that information in time and
space. For these reasons, it is not surprising that the wave height spread is underestimated.

Instead of only measuring uncertainties, the ensemble spread can also be used to directly estimate the con-
fidence in the data relative to climatology. One possibility is to define the confidence as

12
ensemble spread

climatological spread

where the ensemble spread is the square root of time-averaged analysis ensemble variance, and the clima-
tological spread is the temporal standard deviation of the CERA-20C ensemble mean over a longer refer-
ence period. Positive confidence implies the ensemble provides more information than climatology. The

Figure 18. Vertical profiles of the standard deviation of the CERA-20C ensem-
ble for temperature over 608S–608N for the years 1920, 1950, 1980, and 2005.
The root-mean-square error (RMSE) of the CERA-20C ensemble mean compared
to ERA-Interim in 2005 has been plotted for comparison.

Figure 19. Zonal mean of temperature ensemble spread at (left) radiosondes locations and (right) monthly standard deviation of analysis departure averaged
over the period 1959–1960.
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left plot of Figure 21 shows the 2 m temperature confidence for the JJA period of the year 1959 where the
climatology has been computed for the JJA periods over the years 1981–2010. High confidence is located
in the northern extra-tropics hemisphere, as well as over Australia and New Zealand. This can be linked to
the large number of observations assimilated over these areas (right plot of the Figure 21). Not having
observations over the southern ocean produces a confidence close to zero which means that the ensemble
spread is equivalent to the climatological spread. The few stations located in Antarctica mainly along the
coast play an important role as they are able to increase the reanalysis confidence in their vicinity. This diag-
nostic identifies regions that have been constrained by observations and where specific weather situations
are expected to be recreated. This does not imply necessarily that the true state is contained in the ensem-
ble spread (Figure 18 shows that the ensemble spread is globally too small by a factor of 2 in the atmo-
sphere). The specification of uncertainties in reanalysis will require more work in the future to identify
clearly over which regions the users can trust more the data.

7. Future Evolution of the CERA System

The coupled atmosphere-ocean assimilation system used to produce CERA-20C has been recently upgraded
to demonstrate the feasibility of a coupled reanalysis over the satellite-era. In this context, the resolution of
the CERA system has been increased to a 55 km horizontal grid with 137 levels in the atmosphere and to a
quarter of a degree in the ocean. All types of observations including upper-air and satellite measurements
are assimilated. Data assimilation is no longer restricted to the ocean and the atmosphere but is also

Figure 20. Root-mean-square error of the CERA-20C ensemble mean for significant wave height against all available in situ data (left) and mean of the ensemble
spread (right), for a 2 year period (2005–2006).

Figure 21. Two meter temperature confidence computed from (left) the CERA-20C ensemble and (right) number of observations assimilated for the JJA period of
the year 1959.
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performed in the land, wave, and sea-ice components. This proof of concept, called CERA-SAT, will deliver a
reanalysis over the period 2008–2016 which will be publicly accessible. The configuration of the atmosphere
and ocean waves is based on that of the ensemble component of the ERA5 reanalysis, which at the time of
writing was being produced at ECMWF as part of the Copernicus Climate Change Service. Further research
and development in coupled data assimilation is being investigated to improve the quality of subsequent
versions of the CERA system.

In CERA-20C, the sea surface temperature is nudged toward the HadISST2 analysis. The ocean surface tem-
perature is therefore tightly constrained to this preexisting analysis, and the air-sea interactions in the cou-
pled model are not allowed to evolve freely. This has the advantage of preventing drifts in the coupled
model, and makes use of the large amount of effort and expertise that was put into the development of the
HadISST2 analysis, but has a number of disadvantages. For instance, the HadISST2 objective analysis has
spatially and temporally varying errors which are larger in areas of large data voids, but it is difficult to take
these into account in a nudging scheme. The ability to directly assimilate in situ and satellite SST observa-
tions within the same framework as the assimilation of the subsurface profile data would address some
issues discussed above.

A number of developments would be required to do so however. The bias correction of in situ and satellite
data is very important in order not to introduce spurious climate trends due to changes in observing sys-
tems. The large amount of work done to provide bias corrected data within the HadISST development could
provide the information needed to deal with the historical in situ SST data biases. A variational bias correc-
tion scheme for satellite SSTs is also being developed, building on the work done by (Roberts-Jones et al.,
2012), in order to make best use of consistently reprocessed satellite data sets such as those described by
Merchant et al. (2014). The direct assimilation of such in situ and satellite SST data sets requires careful
thought about the diurnal SST signal (which is partially represented in the ocean component of the coupled
model) in order to avoid errors in the model’s diurnal cycle being spread to the atmosphere. A first
approach could be to assimilate data which are representative of the foundation SST (free of diurnal vari-
ability). The vertical projection of information from SST and profile data should be made consistent within
the profile data assimilation, perhaps using the approach described in Waters et al. (2015) which projects
information vertically with length-scales based on the forecast mixed layer depth. Preliminary studies look-
ing at the vertical correlations diagnosed from the ORAS5 ensemble support this approach.

The horizontal spreading of information in both the surface and subsurface of the ocean also requires fur-
ther development if SST observations are to be assimilated directly. A scheme which could allow spreading
of information over large spatial scales when the data are sparse, while making good use of the higher-
resolution measurements during the satellite era is the ultimate aim. Developments based on similar ideas
to those of Karspeck et al. (2012) whereby empirical orthogonal functions (EOFs) are used to model the
large-scale error covariances, applied to surface and sub-surface data are being investigated. These can be
used in conjunction with the existing local-scale error covariance model currently used in CERA-20C for sub-
surface ocean data.

The use of the EDA technique in the atmospheric assimilation system showed some clear benefits by
changing dynamically the weight given to the background depending on the observation density. It is cur-
rently being investigated how to extend the EDA technique to the ocean assimilation component. This
involves estimating the ocean background error variances from the ensemble and developing methods to
deal with sampling limitations. The current diffusion operator used to represent error correlations in the
ocean is also being modified to exploit ensemble-based correlation information, taking into account aniso-
tropic and inhomogeneous correlations

The outer-loop coupling implemented in the CERA system is a way to synchronize the information between
two otherwise uncoupled DA systems. In this context, observations in one component can correct for errors
in another component which provides a consistent state estimate for the coupled model. A set of single
observation experiments have been carried out to investigate the timescales at which the synchronization
between two components occurs in the CERA system. To look at the potential of a fully coupled assimilation
system, this has been compared to a coupled ensemble Kalman filter which uses explicit cross-correlation
between the atmosphere and the ocean. The outer loop coupling is effective when the window is long
enough that original imbalances in the atmospheric and ocean increments to synchronize within the length
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of the assimilation window. On the other hand, we suggest that explicit coupling is preferable for data
assimilation systems with short assimilation windows (e.g., 6 h or less).

8. Conclusions

The ERA-CLIM and ERA-CLIM2 projects have initiated an important European program to extend the current
global reanalysis capability including data rescue, in order to meet the challenging requirements for climate
monitoring, climate research, and the development of climate services. Built upon the experience from the
ERA-20C atmospheric climate reconstruction, CERA-20C is the first coupled reanalysis of the twentieth cen-
tury which includes the atmosphere, ocean, land, waves, and sea ice.

Making optimal use of available observations is key to any successful reanalysis. To this end, a new coupled
atmosphere-ocean assimilation system has been implemented to simultaneously ingest atmospheric and
ocean observations in the ECMWF coupled Earth system model. Particular attention has been given to the
specification of the observation and background error to ensure a consistent analysis across geophysical
variables, space and time.

Although CERA-20C struggles to represent tropical cyclones at the beginning of the century, it shows signif-
icant improvements in the troposphere compared to ERA-20C and 20CRv2c. CERA-20C improves on the rep-
resentation of atmosphere-ocean heat fluxes and of mean sea level pressure compared to previous
reanalyses. At the same time, there are undesirable discontinuities in ocean heat content and an excessive
accumulation of Arctic sea ice. The spread of the ensemble decreases over time as the observational record
improves. However, verification suggests that the spread should be larger to give a better indication of the
confidence we can have in the reanalysis data.

The observation feedback archive is available for external users and includes in particular the background
and analysis departures for each observation processed by CERA-20C. This provides a unique source for
detection and correction of biases or other errors in the assimilated observations. The scientific community
and data set users also provide feedback and raise important issues that need to be addressed in future
reanalyses. This is why reanalysis is an ongoing activity that should never be regarded as completed. New
climate reanalyses need to be produced periodically to benefit from the latest updates in the models and
data assimilation systems developed for numerical weather prediction. Historical reanalyses, in particular,
also benefit from more (and more accurate) observations as historical observations are rescued, digitized,
and quality-controlled.

The coupled atmosphere-ocean assimilation system used to produce CERA-20C has been recently upgraded
to demonstrate the feasibility of a coupled reanalysis over the satellite-era. This proof of concept called
CERA-SAT has delivered a reanalysis over the period 2008–2016 at higher resolution and assimilating all
type of observations including upper-air and satellite measurements. The CERA system, originally designed
for climate reanalysis, could pave the way for more advanced data assimilation to be used in weather fore-
casting. CERA-20C enables users to develop weather and climate-sensitive applications in a wide range of
fields by providing a longer data set that extends back to the early instrumental record.

Data Access

ECMWF provides access to CERA-20C and other public data sets via a dedicated data portal (http://apps.
ecmwf.int/datasets). This consists of a point-and-click web interface used by users to discover the data sets
available. A WebAPI is provided so users can programmatically download large amounts of data, which
would otherwise require tedious interactions with the web interface. For each data set, there are:

1. instructions on how to download the data efficiently, following the organization of the data set in the
MARS archive,

2. documentation explaining how the data set was produced, spatial and temporal resolution and detailed
product description, and

3. a link to the conditions of use, which users have to acknowledge before any data download.
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