25 research outputs found

    Extracellular Matrix Stiffness and Composition Regulate the Myofibroblast Differentiation of Vaginal Fibroblasts

    Get PDF
    Fibroblast to myofibroblast differentiation is a key feature of wound-healing in soft tissues, including the vagina. Vaginal fibroblasts maintain the integrity of the vaginal wall tissues, essential to keep pelvic organs in place and avoid pelvic organ prolapse (POP). The micro-environment of vaginal tissues in POP patients is stiffer and has different extracellular matrix (ECM) composition than healthy vaginal tissues. In this study, we employed a series of matrices with known stiffnesses, as well as vaginal ECMs, in combination with vaginal fibroblasts from POP and healthy tissues to investigate how matrix stiffness and composition regulate myofibroblast differentiation in vaginal fibroblasts. Stiffness was positively correlated to production of α-smooth muscle actin (α-SMA). Vaginal ECMs induced myofibroblast differentiation as both α-SMA and collagen gene expressions were increased. This differentiation was more pronounced in cells seeded on POP-ECMs that were stiffer than those derived from healthy tissues and had higher collagen and elastin protein content. We showed that stiffness and ECM content regulate vaginal myofibroblast differentiation. We provide preliminary evidence that vaginal fibroblasts might recognize POP-ECMs as scar tissues that need to be remodeled. This is fundamentally important for tissue repair, and provides a rational basis for POP disease modelling and therapeutic innovations in vaginal reconstruction

    Treatment with tocilizumab or corticosteroids for COVID-19 patients with hyperinflammatory state: a multicentre cohort study (SAM-COVID-19)

    Get PDF
    Objectives: The objective of this study was to estimate the association between tocilizumab or corticosteroids and the risk of intubation or death in patients with coronavirus disease 19 (COVID-19) with a hyperinflammatory state according to clinical and laboratory parameters. Methods: A cohort study was performed in 60 Spanish hospitals including 778 patients with COVID-19 and clinical and laboratory data indicative of a hyperinflammatory state. Treatment was mainly with tocilizumab, an intermediate-high dose of corticosteroids (IHDC), a pulse dose of corticosteroids (PDC), combination therapy, or no treatment. Primary outcome was intubation or death; follow-up was 21 days. Propensity score-adjusted estimations using Cox regression (logistic regression if needed) were calculated. Propensity scores were used as confounders, matching variables and for the inverse probability of treatment weights (IPTWs). Results: In all, 88, 117, 78 and 151 patients treated with tocilizumab, IHDC, PDC, and combination therapy, respectively, were compared with 344 untreated patients. The primary endpoint occurred in 10 (11.4%), 27 (23.1%), 12 (15.4%), 40 (25.6%) and 69 (21.1%), respectively. The IPTW-based hazard ratios (odds ratio for combination therapy) for the primary endpoint were 0.32 (95%CI 0.22-0.47; p < 0.001) for tocilizumab, 0.82 (0.71-1.30; p 0.82) for IHDC, 0.61 (0.43-0.86; p 0.006) for PDC, and 1.17 (0.86-1.58; p 0.30) for combination therapy. Other applications of the propensity score provided similar results, but were not significant for PDC. Tocilizumab was also associated with lower hazard of death alone in IPTW analysis (0.07; 0.02-0.17; p < 0.001). Conclusions: Tocilizumab might be useful in COVID-19 patients with a hyperinflammatory state and should be prioritized for randomized trials in this situatio

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Biomechanical Properties of the Pelvic Floor and its Relation to Pelvic Floor Disorders

    No full text
    Pelvic organ prolapse and stress urinary incontinence remain a clinical challenge as they have unclear pathophysiology and suboptimal treatments. These common pelvic floor disorders (PFD) are characterized by the weakening of the pelvic floor supportive tissues that are directly related to their biomechanical properties. Characterizing the biomechanical properties of the pelvic floor tissues has been the focus of recent studies and researchers are using tools that are not always well understood by clinicians. Therefore, the aim of this review is to provide an overview of the most used methods to test the passive biomechanical properties of the human pelvic floor tissues. We also summarize recent findings from studies looking into the passive properties of the pelvic floor in pelvic floor disorders using the ex vivo tensile test and emerging in vivo techniques. Together, these studies provide valuable quantitative information about the different biomechanical properties of the supportive tissues of the pelvic floor under normal and pathological conditions. Results from ex vivo tests provide valuable data that needs to be correlated to the in vivo data and the clinical manifestations of the symptoms of the PFD. As more research is conducted we will obtain an enhanced understanding of the effect of age, PFD, and treatments on the biomechanical properties of the pelvic floor. This information can contribute to better identify individuals at risk, improve clinical diagnosis, and develop new treatments to advance clinical practice. Pelvic floor disorders are characterized by the weakening of the pelvic floor tissues that is directly related to their biomechanical properties. Such properties change with age, disease, and treatments. This review provides the physician with an overview of the most used methods to investigate the passive biomechanical properties of the human pelvic floor tissues in the context of pelvic floor disorders

    Fibroblasts from women with pelvic organ prolapse show differential mechanoresponses depending on surface substrates

    Get PDF
    INTRODUCTION AND HYPOTHESIS: Little is known about dynamic cell-matrix interactions in the context of pathophysiology and treatments for pelvic organ prolapse (POP). This study sought to identify differences between fibroblasts from women with varying degrees of prolapse in reaction to mechanical stimuli and matrix substrates in vitro. METHODS: Fibroblasts from the vaginal wall of three patients with POP Quantification (POP-Q) system stages 0, II, and IV were stretched on artificial polymer substrates either coated or not coated with collagen I. Changes in morphology and anabolic/catabolic compounds that affect matrix remodelling were evaluated at protein- and gene-expression levels. Statistical analysis was performed using one-way analysis of variance (ANOVA), followed by Tukey-Kramer’s post hoc test. RESULTS: POP fibroblasts show delayed cell alignment and lower responses to extracellular matrix remodelling factors at both enzymatic- and gene-expression levels compared with healthy fibroblasts. CONCLUSION: POP fibroblasts, when compared with healthy cells, show differential mechanoresponses on two artificial polymer substrates. This should be taken into account when designing or improving implants for treating POP

    Synthetic Extracellular Matrices as a Toolbox to Tune Stem Cell Secretome

    Get PDF
    The application of stem cell-derived secretome in regenerative therapies offers the key advantage that instead of the stem cells, only their effective paracrine compounds are in vivo delivered. Ideally, the secretome can be steered by the culture conditions of the stem cells. So far, most studies use stem cells cultured on stiff plastic substrates, not representative of their native 3D environment. In this study, cells are cultured inside synthetic polyisocyanide (PIC)-based hydrogels, which are minimal, tailorable, and highly reproducible biomimetic matrices. Secretome analysis of human adipose-derived stem cells (multiplex, ELISA) displays that matrix manipulation is a powerful tool to direct the secretome composition. As an example, cells in nonadherent PIC gels secrete increased levels of IL-10 and the conditioned media from 3D culture accelerate wound closure. In all, our PIC-based approach opens the door to dedicated matrix design to engineer the secretome for custom applications

    Synthetic Extracellular Matrices as a Toolbox to Tune Stem Cell Secretome

    No full text
    The application of stem cell-derived secretome in regenerative therapies offers the key advantage that instead of the stem cells, only their effective paracrine compounds are in vivo delivered. Ideally, the secretome can be steered by the culture conditions of the stem cells. So far, most studies use stem cells cultured on stiff plastic substrates, not representative of their native 3D environment. In this study, cells are cultured inside synthetic polyisocyanide (PIC)-based hydrogels, which are minimal, tailorable, and highly reproducible biomimetic matrices. Secretome analysis of human adipose-derived stem cells (multiplex, ELISA) displays that matrix manipulation is a powerful tool to direct the secretome composition. As an example, cells in nonadherent PIC gels secrete increased levels of IL-10 and the conditioned media from 3D culture accelerate wound closure. In all, our PIC-based approach opens the door to dedicated matrix design to engineer the secretome for custom applications
    corecore