30 research outputs found

    Toward a Mutual Change of Religion and Urban Space: A Comparative Perspective

    Get PDF
    From a historical perspective, cities have served as more than mere locations where religious practices are observed; they have consistently exhibited an elevated level of historical documentation. The claim advanced here is that the interrelationship between religious change and urban development necessitates thorough analysis. It is imperative to critically examine the significant developments in local and trans-local religions, particularly emphasising their distinct urban contextual factors. At the same time, such urban conditions, the practices, and discourse that shape the understanding of these conditions as urban are not independent variables in the study of religious change. Rather, they are influenced by religious practices and individuals, thereby forming a reciprocal relationship. The choice of areas is an assumption that the pertinent aspect in establishing a connection is the spatial character of religious practices and ideas and their material manifestation in physical space. The article concisely examines various aspects related to the transformation of urban spaces and religious practices. These include the process of monumentalising urban areas and gods, the public display and the articulation of communication with God and gods, the imaginative and widespread utilisation of scripture in religious activities and thought, the increasing division of labour and professionalisation, the emergence of individual urban actors who are not solely defined by their ancestral lineage, the formation of religious groups, the religious organisation of time and the influence of temporal concepts on religious ideas and practices, and lastly, the conceptualisation of alternatives to urban life through the religious exaggeration of rural and natural environments. Such a cursory review of religious changes in urban settings and their impact on urbanism does not yield any definitive assertions on these developments. However, the collective evidence confirms the effectiveness of the presented approach

    Introduction

    Get PDF
    This introduction suggests regarding \u2018religion\u2019 as a cultural product. The relationship between religion and memory can be investigated through the practice of oath-taking, a particularly sophisticated social tool in ancient Greece. It concerns, in fact, both the status of social trust and problematic intercourses between gods and human beings, who fi nd in oath a regulated and effective space of interrelation

    The Global Inventory of Methane Hydrate in Marine Sediments: A Theoretical Approach

    Get PDF
    The accumulation of methane hydrate in marine sediments is controlled by a number of physical and biogeochemical parameters including the thickness of the gas hydrate stability zone (GHSZ), the solubility of methane in pore fluids, the accumulation of particulate organic carbon at the seafloor, the kinetics of microbial organic matter degradation and methane generation in marine sediments, sediment compaction and the ascent of deep-seated pore fluids and methane gas into the GHSZ. Our present knowledge on these controlling factors is discussed and new estimates of global sediment and methane fluxes are provided applying a transport-reaction model at global scale. The modeling and the data evaluation yield improved and better constrained estimates of the global pore volume within the modern GHSZ ( ≥ 44 × 1015 m3), the Holocene POC accumulation rate at the seabed (~1.4 × 1014 g yr−1), the global rate of microbial methane production in the deep biosphere (4−25 × 1012 g C yr−1) and the inventory of methane hydrates in marine sediments ( ≥ 455 Gt of methane-bound carbon)

    Serpentinization in the trench-outer rise region offshore of Nicaragua: constraints from seismic refraction and wide-angle data

    Get PDF
    Recent seismic evidence suggested that most oceanic plate hydration is associated with trench-outer rise faulting prior to subduction. Hydration at trenches may have a significant impact on the subduction zone water cycle. Previous seismic experiments conducted to the northwest of Nicoya Peninsula, Northern Costa Rica, have shown that the subducting Cocos lithosphere is pervasively altered, which was interpreted to be due to both hydration (serpentinization) and fracturing of the crustal and upper-mantle rocks. New seismic wide-angle reflection and refraction data were collected along two profiles, running parallel to the Middle American trench axis offshore of central Nicaragua, revealing lateral changes of the seismic properties of the subducting lithosphere. Seismic structure along both profiles is characterized by low velocities both in the crust and upper mantle. Velocities in the uppermost mantle are found to be in the range 7.3–7.5 km s−1; thus are 8–10 per cent lower than velocities typical for unaltered peridotites and hence confirm the assumption that serpentinization is a common process at the trench-outer rise area offshore of Nicaragua. In addition, a prominent velocity anomaly occurred within the crust beneath two seamounts. Here, velocity reduction may indicate increased porosity and perhaps permeability, supporting the idea that seamounts serve as sites for water percolation and circulation

    The Oceanographer transform fault revisited - preliminary results from a micro-seismicity survey reveals extensional tectonics at ridge-transform intersections

    Get PDF
    European Geosciences Union (EGU) General Assembly, 23-27 May 2022, Vienna, AustriaFracture zones were recognized to be an integral part of the seabed long before plate tectonics was established. Later, plate tectonics linked fracture zones to oceanic transform faults, suggesting that they are the inactive and hence fossil trace of transforms. Yet, scientist have spent little time surveying them in much detail over the last three decades. Recent evidence (Grevemeyer, I., Rüpke, L.H., Morgan, J.P., Iyer, K, and Devey, C.W., 2021, Extensional tectonics and two-stage crustal accretion at oceanic transform faults, Nature, 591, 402–407, doi:10.1038/s41586-021-03278-9) suggests that the traditional concept of transform faults as being conservative (non-accretionary) plate boundary faults might be wrong. Instead, transform faults are always deeper than the associated fracture zones and numerical modelling results suggest that transform faults seem to suffer from extensional tectonics below their strike-slip surface fault zone. During the cruise M170 of the German research vessel METEOR early in 2021, we aimed to test this hypothesis by collecting, in a pilot study, micro-seismicity data from the Oceanographer transform fault which offsets the Mid-Atlantic Ridge by 120-km south of the Azores near 35°N. Preliminary analysis of 10-days of seismicity data recorded at 26 ocean-bottom-seismometers and hydrophones showed 10-15 local earthquakes per day. Along the transform fault the distribution of micro-earthquakes and focal mechanisms support strike-slip motion. However, at both ridge-transform intersections seismicity does not mimic a right-angular plate boundary; instead, seismicity occurs below the inside corner and focal mechanism indicate extensional tectonics. Therefore, micro-seismicity supports features found in numerical simulations, revealing that transform faults have an extensional as well as a strike-slip componentPeer reviewe

    Pulsed subduction accretion and tectonic erosion reconstructed since 2.5 Ma from the tephra record offshore Costa Rica

    Get PDF
    Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 6 (2005): Q09016, doi:10.1029/2005GC000963.Tephra layers recovered by Ocean Drilling Program from the forearc and trench regions offshore the Nicoya Peninsula of Costa Rica allow the temporal evolution of the volcanic arc to be reconstructed since 2.5 Ma. Major and trace element analyses by microprobe methods reveal a dominant tholeiitic character and a provenance in the Costa Rican area. The tephra show long-term coherent variability in geochemistry. One tephra dated at 1.45 Ma shows minimum values in ɛ Nd and maximum Li/Y consistent with very high degrees of sediment recycling at this time. However, overall Li/Y and δ7Li increase with SiO2 content, suggesting addition of heavy Li through forearc tectonic erosion and crustal assimilation. Peak values in δ7Li starting at 1.45 Ma and lasting ∼0.5 m.y. indicate enhanced tectonic erosion of the forearc possibly caused by subduction of a seamount at 1.45 Ma. The tephra record indicates significant temporal variability in terms of sediment subduction, reconciling the geologic evidence for long-term tectonic erosion and geochemical evidence for recent sediment accretion in the modern Central American arc.Financial support for the analytical work was gratefully received from JOI-USSAC. The lithium isotope work was supported in part by National Science Foundation grant OCE-990554 to L.H.C

    Hydrogeological system of erosional convergent margins and its influence on tectonics and interplate seismogenesis

    Get PDF
    [1] Fluid distribution in convergent margins is by most accounts closely related to tectonics. This association has been widely studied at accretionary prisms, but at half of the Earth's convergent margins, tectonic erosion grinds down overriding plates, and here fluid distribution and its relation to tectonics remain speculative. Here we present a new conceptual model for the hydrological system of erosional convergent margins. The model is based largely on new data and recently published observations from along the Middle America Trench offshore Nicaragua and Costa Rica, and it is consistent with observations from other erosional margins. The observations indicate that erosional margins possess previously unrecognized distinct hydrogeological systems: Most fluid contained in the sediment pores and liberated by early dehydration reactions drains from the plate boundary through a fractured upper plate to seep at the seafloor across the slope, rather than migrating along the décollement toward the deformation front as described for accretionary prisms. The observations indicate that the relative fluid abundance across the plate-boundary fault zone and fluid migration influence long-term tectonics and the transition from aseismic to seismogenic behavior. The segment of the plate boundary where fluid appears to be more abundant corresponds to the locus of long-term tectonic erosion, where tectonic thinning of the overriding plate causes subsidence and the formation of the continental slope. This correspondence between observations indicates that tectonic erosion is possibly linked to the migration of overpressured fluids into the overriding plate. The presence of overpressured fluids at the plate boundary is compatible with the highest flow rates estimated at slope seeps. The change from aseismic to seismogenic behavior along the plate boundary of the erosional margin begins where the amount of fluid at the fault declines with depth, indicating a control on interplate earthquakes. A previously described similar observation along accreting plate boundaries strongly indicates that fluid abundance exerts a first-order control on interplate seismogenesis at all types of subduction zones. We hypothesize that fluid depletion with depth increases grain-to-grain contact, increasing effective stress on the fault, and modifies fault zone architecture from a thick fault zone to a narrower zone of localized slip

    Mantle wedge hydration in Nicaragua from Local Earthquake Tomography

    Get PDF
    The continental margin of Nicaragua and Costa Rica is characterized by significant lateral changes from north to south such as a decreasing dip of the slab, a decreasing magma production and a shift in the volcanic front. To investigate this transition, a joint on- and offshore local earthquake tomography was performed. Low P-wave velocities and high Vp/Vs ratios, indicative for hydration, were found in the upper-mantle and lowermost crust beneath the Sandino Basin. The mantle wedge hydration can be estimated to 2.5 wt. per cent beneath south Nicaragua. In contrast, the mantle wedge beneath north Costa Rica is weakly or not hydrated. The hydration leads to a local gap in the seismicity in Nicaragua. The lateral transition between the hydrated and non-hydrated areas occurs within a distance of about 10 km. This transition coincides with a change in the crustal thickness in the order of 5–10 km, thickening to the south, and in the tectonic regimes. The change in the tectonic regimes towards a stronger extension along the margin of Nicaragua could be the key for understanding the observations: the extension may support the opening of pathways for a wide zone of fluid migration and hydration through the overriding plate which are identified with areas of low Vp, high Vp/Vs and low seismicity

    Three-dimensional P-wave velocity structure on the shallow part of the Central Costa Rican Pacific margin from Local Earthquake Tomography using off- and onshore networks

    Get PDF
    The Central Costa Rican Pacific margin is characterized by a high-seismicity rate, coincident with the subduction of rough-relief ocean floor and has generated earthquakes with magnitude up to seven in the past. We inverted selected P-wave traveltimes from earthquakes recorded by a combined on- and offshore seismological array deployed during 6 months in the area, simultaneously determining hypocentres and the 3-D tomographic velocity structure on the shallow part of the subduction zone (<70 km). The results reflect the complexity associated to subduction of ocean-floor morphology and the transition from normal to thickened subducting oceanic crust. The subducting slab is imaged as a high-velocity perturbation with a band of low velocities (LVB) on top encompassing the intraslab seismicity deeper than ∼30 km. The LVB is locally thickened by the presence of at least two subducted seamounts beneath the margin wedge. There is a general eastward widening of the LVB over a relatively short distance, closely coinciding with the onset of an inverted forearc basin onshore and the appearance of an aseismic low-velocity anomaly beneath the inner forearc. The latter coincides spatially with an area of the subaerial forearc where differential uplift of blocks has been described, suggesting tectonic underplating of eroded material against the base of the upper plate crust. Alternatively, the low velocities could be induced by an accumulation of upward migrating fluids. Other observed velocity perturbations are attributed to several processes taking place at different depths, such as slab hydration through outer rise faulting, tectonic erosion and slab dehydration

    Geodynamic Model of the Arabian Platform

    No full text
    The Arabian Platform is unusually wide, thick and oil-rich. We explain this as due to the effects of melt produced in the asthenosphere during rifting, meaning 1) the plate remained elevated as a result of buoyancy and 2) the plate was thickened by intrusions allowing it extend more than is usually assumed. Later, at break-up, melt was released at the new Tethyan oceanic spreading centre causing the rifted margins to subside rapidly, with the accommodation space filled by prolific carbonates and evaporites
    corecore