14 research outputs found

    SYSTEM FOR MEASURING KINEMATICS OF VESTIBULAR SYSTEM MOVEMENTS IN NEUROLOGICAL PRACTICE

    Get PDF
    The article deals with the design of a system for studying kinematics of movement of the vestibular system. Up to now there has not existed a system which would enable to measure the kinematic quantities of movement of the individual parts of the vestibular system within its coordinate system. The proposed system removes these deficiencies by suitable positioning of five gyro-accelerometric units on the helmet. The testing of the system took place under two conditions, during Unilateral Rotation on Barany Chair and Head Impulse Test. During the testing, the system justified its application because the results show that the kinematic quantities of the movement of the left and right labyrinths of the vestibular system differ. The introduced device is mainly intended for application in clinical neurology with the aim to enable the physician to measure all linear and angular accelerations of the vestibular system during medical examinations

    Dermacentor reticulatus: a vector on the rise

    Get PDF
    Dermacentor reticulatus is a hard tick species with extraordinary biological features. It has a high reproduction rate, a rapid developmental cycle, and is also able to overcome years of unfavourable conditions. Dermacentor reticulatus can survive under water for several months and is cold-hardy even compared to other tick species. It has a wide host range: over 60 different wild and domesticated hosts are known for the three active developmental stages. Its high adaptiveness gives an edge to this tick species as shown by new data on the emergence and establishment of D. reticulatus populations throughout Europe. The tick has been the research focus of a growing number of scientists, physicians and veterinarians. Within the Web of Science database, more than a fifth of the over 700 items published on this species between 1897 and 2015 appeared in the last three years (2013–2015). Here we attempt to synthesize current knowledge on the systematics, ecology, geographical distribution and recent spread of the species and to highlight the great spectrum of possible veterinary and public health threats it poses. Canine babesiosis caused by Babesia canis is a severe leading canine vector-borne disease in many endemic areas. Although less frequently than Ixodes ricinus, D. reticulatus adults bite humans and transmit several Rickettsia spp., Omsk haemorrhagic fever virus or Tick-borne encephalitis virus. We have not solely collected and reviewed the latest and fundamental scientific papers available in primary databases but also widened our scope to books, theses, conference papers and specialists colleagues’ experience where needed. Besides the dominant literature available in English, we also tried to access scientific literature in German, Russian and eastern European languages as well. We hope to inspire future research projects that are necessary to understand the basic life-cycle and ecology of this vector in order to understand and prevent disease threats. We conclude that although great strides have been made in our knowledge of the eco-epidemiology of this species, several gaps still need to be filled with basic research, targeting possible reservoir and vector roles and the key factors resulting in the observed geographical spread of D. reticulatus. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13071-016-1599-x) contains supplementary material, which is available to authorized users

    The ALICE experiment at the CERN LHC

    Get PDF
    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008

    An evaluation method of complex movement and dynamic stability of the arm during walking based on gyroscope data

    Get PDF
    The work introduces a new means for quantification of dynamic stability and upper limb movement as a whole during gait. Swinging arms during gait performed by the experiment volunteers, as a cyclic motion, was quantified using two parameters AH (the convex hull area) and already known to the medical community - ROM (range of motion) revealed a potential use of the former in the scientific community. Looking at the results of the two parameters, even though ROM has shown to seem to be comparably instrumental as it yielded surprisingly rather identical results to the AH parameter (which yielded values of subjects walking at 5 km/h about twofold larger than those in volunteers walking at 3 km/h), it still fails to examine the pair of angles at the same time due to a strong interrelation of the observed joints in volunteers. As complex upper limb movement appears to be rather uniform for both arms, no significant differences between the dominant and non-dominant arm were found. It appears that the novel method using inexpensive gyroscopes is capable of quantifying dynamic stability and periodic movement pattern of the upper limb, therefore a pair of two common gyroscopes or goniometers placed on the patients body may find their place among standard equipment for clinical examinations or in the field of biomechanical measurements. The presented method might possibly also become a part of MoCap systems or in the area of prosthetics in which dynamic stability or movement patterns are key parameters

    System for measuring movement response of small animals to changes in their orientation

    Get PDF
    The article introduces a novel system for measuring locomotive response of small animals (specifically amphibians and reptiles) to change in their body orientation based on a camera system located on mechanical platform powered by a set of three actuators. The camera system consists of three cameras providing a record three anatomical angles of body segment movements in space. A gyro accelerometer system allowing for measuring angles of the platform orientation in space is also a part of the mechanical platform, together with a computer providing for a precise measuring of body segment angles in anatomical as well as the earth's coordinate systems. We tested this novel method by measuring head rotation of a small reptile via monitoring reflective markers on the animal's body. A part of the work's results is thus a presentation of a method for monitoring animal's head compensatory movements. The assumption for the future is expanding the use of the system for more complex 3D movements, and adding the possibility to measure not exclusively just momentary values, but also angular velocity and segment acceleration for veterinary and medical use

    PLATFORM WITH CAMERA SYSTEM FOR MEASUREMENT OF COMPENSATORY MOVEMENTS OF SMALL ANIMALS

    Get PDF
    The article introduces systems and methods of a controllable rotational platform used for measuring compensatory movement of small animals. The system, based on a camera subsystem, is located on a mechanical platform powered by a set of three actuators. The subsystems and methods allow to measure angles of the platform’s orientation in space and body segment angles in both anatomical and Earth’s coordinate systems. The methods of video processing, selection of measurement parameters and detection of anatomical angles are thoroughly described in this article. The study also deals with the software designed in MatLab®, which controls the platform, records and processes videos, and obtains angles for the movement analysis. The system was tested for measuring a head rotation of a small reptile/amphibian and monitored reflective markers on the creature’s body by the camera system. This method has never been described before. The new subsystems of the platform and methods for monitoring animal’s head compensatory movements can be used in studies of the neural system and its evolution
    corecore