14 research outputs found

    The Transcription Factor STAT6 Mediates Direct Repression of Inflammatory Enhancers and Limits Activation of Alternatively Polarized Macrophages

    Get PDF
    The molecular basis of signal-dependent transcriptional activation has been extensively studied in macrophage polarization, but our understanding remains limited regarding the molecular determinants of repression. Here we show that IL-4-activated STAT6 transcription factor is required for the direct transcriptional repression of a large number of genes during in vitro and in vivo alternative macrophage polarization. Repression results in decreased lineage-determining transcription factor, p300, and RNA polymerase II binding followed by reduced enhancer RNA expression, H3K27 acetylation, and chromatin accessibility. The repressor function of STAT6 is HDAC3 dependent on a subset of IL-4-repressed genes. In addition, STAT6-repressed enhancers show extensive overlap with the NF-kappaB p65 cistrome and exhibit decreased responsiveness to lipopolysaccharide after IL-4 stimulus on a subset of genes. As a consequence, macrophages exhibit diminished inflammasome activation, decreased IL-1beta production, and pyroptosis. Thus, the IL-4-STAT6 signaling pathway establishes an alternative polarization-specific epigenenomic signature resulting in dampened macrophage responsiveness to inflammatory stimuli

    Macrophage origin limits functional plasticity in helminth-bacterial co-infection

    Get PDF
    Rapid reprogramming of the macrophage activation phenotype is considered important in the defense against consecutive infection with diverse infectious agents. However, in the setting of persistent, chronic infection the functional importance of macrophage-intrinsic adaptation to changing environments vs. recruitment of new macrophages remains unclear. Here we show that resident peritoneal macrophages expanded by infection with the nematode Heligmosomoides polygyrus bakeri altered their activation phenotype in response to infection with Salmonella enterica ser. Typhimurium in vitro and in vivo. The nematode-expanded resident F4/80high macrophages efficiently upregulated bacterial induced effector molecules (e.g. MHC-II, NOS2) similarly to newly recruited monocyte-derived macrophages. Nonetheless, recruitment of blood monocyte-derived macrophages to Salmonella infection occurred with equal magnitude in co-infected animals and caused displacement of the nematode-expanded, tissue resident-derived macrophages from the peritoneal cavity. Global gene expression analysis revealed that although nematode-expanded resident F4/80high macrophages made an anti-bacterial response, this was muted as compared to newly recruited F4/80low macrophages. However, the F4/80high macrophages adopted unique functional characteristics that included enhanced neutrophil-stimulating chemokine production. Thus, our data provide important evidence that plastic adaptation of MΦ activation does occur in vivo, but that cellular plasticity is outweighed by functional capabilities specific to the tissue origin of the cell

    The adult murine heart has a sparse, phagocytically active macrophage population that expands through monocyte recruitment and adopts an ‘M2’ phenotype in response to Th2 immunologic challenge

    Get PDF
    AbstractTissue resident macrophages have vital homeostatic roles in many tissues but their roles are less well defined in the heart. The present study aimed to identify the density, polarisation status and distribution of macrophages in the healthy murine heart and to investigate their ability to respond to immune challenge. Histological analysis of hearts from CSF-1 receptor (csf1-GFP; MacGreen) and CX3CR1 (Cx3cr1GFP/+) reporter mice revealed a sparse population of GFP positive macrophages that were evenly distributed throughout the left and right ventricular free walls and septum. F4/80+CD11b+ cardiac macrophages, sorted from myocardial homogenates, were able to phagocytose fluorescent beads in vitro and expressed markers typical of both ‘M1’ (IL-1β, TNF and CCR2) and ‘M2’ activation (Ym1, Arg 1, RELMα and IL-10), suggesting no specific polarisation in healthy myocardium. Exposure to Th2 challenge by infection of mice with helminth parasites Schistosoma mansoni, or Heligmosomoides polygyrus, resulted in an increase in cardiac macrophage density, adoption of a stellate morphology and increased expression of Ym1, RELMα and CD206 (mannose receptor), indicative of ‘M2’ polarisation. This was dependent on recruitment of Ly6ChighCCR2+ monocytes and was accompanied by an increase in collagen content.In conclusion, in the healthy heart resident macrophages are relatively sparse and have a phagocytic role. Following Th2 challenge this population expands due to monocyte recruitment and adopts an ‘M2’ phenotype associated with increased tissue fibrosis

    IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1

    Get PDF
    Macrophages (M Phi s) colonize tissues during inflammation in two distinct ways: recruitment of monocyte precursors and proliferation of resident cells. We recently revealed a major role for IL-4 in the proliferative expansion of resident M Phi s during a Th2-biased tissue nematode infection. We now show that proliferation of M Phi s during intestinal as well as tissue nematode infection is restricted to sites of IL-4 production and requires M Phi-intrinsic IL-4R signaling. However, both IL-4R alpha-dependent and -independent mechanisms contributed to M Phi proliferation during nematode infections. IL-4R-independent proliferation was controlled by a rise in local CSF-1 levels, but IL-4R alpha expression conferred a competitive advantage with higher and more sustained proliferation and increased accumulation of IL-4R alpha(+) compared with IL-4R alpha(-) cells. Mechanistically, this occurred by conversion of IL-4R alpha(+) M Phi s from a CSF-1-dependent to -independent program of proliferation. Thus, IL-4 increases the relative density of tissue M Phi s by overcoming the constraints mediated by the availability of CSF-1. Finally, although both elevated CSF1R and IL-4R alpha signaling triggered proliferation above homeostatic levels, only CSF-1 led to the recruitment of monocytes and neutrophils. Thus, the IL-4 pathway of proliferation may have developed as an alternative to CSF-1 to increase resident M Phi numbers without coincident monocyte recruitment

    IL-17 and neutrophils: unexpected players in the type 2 immune response

    Get PDF
    The study of immunity to helminth infection has been central to understanding the function of type 2 cytokines and their targets. Although type 2 cytokines are considered anti-inflammatory and promote tissue repair, they also contribute to allergy and fibrosis. Here, we utilise data from helminth infection models, to illustrate that IL-17 and neutrophils, typically associated with pro-inflammatory responses, are intimately linked with type 2 immunity. Neutrophils work with IL-4Rα-activated macrophages to control incoming larvae but this comes at a cost of enhanced tissue damage. Chitinase like proteins (CLPs) bridge these diverse outcomes, inducing both protective IL-17 and reparative Th2 responses. Dysregulation of CLPs, IL-17 and neutrophils likely contribute to disease severity and pathology associated with type 2 immunity

    Oncogenic Properties of Apoptotic Tumor Cells in Aggressive B Cell Lymphoma

    Get PDF
    BACKGROUND: Cells undergoing apoptosis are known to modulate their tissue microenvironments. By acting on phagocytes, notably macrophages, apoptotic cells inhibit immunological and inflammatory responses and promote trophic signaling pathways. Paradoxically, because of their potential to cause death of tumor cells and thereby militate against malignant disease progression, both apoptosis and tumor-associated macrophages (TAMs) are often associated with poor prognosis in cancer. We hypothesized that, in progression of malignant disease, constitutive loss of a fraction of the tumor cell population through apoptosis could yield tumor-promoting effects. RESULTS: Here, we demonstrate that apoptotic tumor cells promote coordinated tumor growth, angiogenesis, and accumulation of TAMs in aggressive B cell lymphomas. Through unbiased "in situ transcriptomics" analysis-gene expression profiling of laser-captured TAMs to establish their activation signature in situ-we show that these cells are activated to signal via multiple tumor-promoting reparatory, trophic, angiogenic, tissue remodeling, and anti-inflammatory pathways. Our results also suggest that apoptotic lymphoma cells help drive this signature. Furthermore, we demonstrate that, upon induction of apoptosis, lymphoma cells not only activate expression of the tumor-promoting matrix metalloproteinases MMP2 and MMP12 in macrophages but also express and process these MMPs directly. Finally, using a model of malignant melanoma, we show that the oncogenic potential of apoptotic tumor cells extends beyond lymphoma. CONCLUSIONS: In addition to its profound tumor-suppressive role, apoptosis can potentiate cancer progression. These results have important implications for understanding the fundamental biology of cell death, its roles in malignant disease, and the broader consequences of apoptosis-inducing anti-cancer therapy

    Ncounter Fibrosis panel gene expression analysis

    No full text
    zip. folders containing the raw data files (.rcc) from the Ncounter Flex system as well as the associated nSolver advanced analysis. Mice were injected with peritoneal dialysis fluid (Physioneal 40, 3.86% glucose, Baxter Healthcare) or dialysis fluid supplemented with 40 mM Methylglyoxal once daily, 5 times a week for a total of 14 injections and whole PEC isolated and subjected to RNA-isolation and Ncounter-transcript analysis. As control naive, uninjected mice were used. Groups of samples: 1-3: naive 4-6: Physioneal 7-9: Physioneal + Methylglyoxa

    The biology of nematode- and IL4Rα-dependent murine macrophage polarization in vivo as defined by RNA-Seq and targeted lipidomics.

    No full text
    Alternatively activated macrophages (AAMφ) are a major component of the response to helminth infection; however, their functions remain poorly defined. To better understand the helminth-induced AAMφ phenotype, we performed a systems-level analysis of in vivo derived AAMφ using an established mouse model. With next-generation RNA sequencing, we characterized the transcriptomes of peritoneal macrophages from BALB/c and IL4Rα(−/−) mice elicited by the nematode Brugia malayi, or via intraperitoneal thioglycollate injection. We defined expression profiles of AAMφ-associated cytokines, chemokines, and their receptors, providing evidence that AAMφ contribute toward recruitment and maintenance of eosinophilia. Pathway analysis highlighted complement as a potential AAMφ-effector function. Up-regulated mitochondrial genes support in vitro evidence associating mitochondrial metabolism with alternative activation. We mapped macrophage transcription start sites, defining over-represented cis-regulatory motifs within AAMφ-associated promoters. These included the binding site for PPAR transcription factors, which maintain mitochondrial metabolism. Surprisingly PPARγ, implicated in the maintenance of AAMφ, was down-regulated on infection. PPARδ expression, however, was maintained. To explain how PPAR-mediated transcriptional activation could be maintained, we used lipidomics to quantify AAMφ-derived eicosanoids, potential PPAR ligands. We identified the PPARδ ligand PGI(2) as the most abundant AAMφ-derived eicosanoid and propose a PGI(2)-PPARδ axis maintains AAMφ during B malayi implantation

    Particles from the Echinococcus granulosus laminated layer inhibit IL-4 and growth factor-driven Akt phosphorylation and proliferative responses in macrophages

    No full text
    Proliferation of macrophages is a hallmark of inflammation in many type 2 settings including helminth infections. The cellular expansion is driven by the type 2 cytokine interleukin-4 (IL-4), as well as by M-CSF, which also controls homeostatic levels of tissue resident macrophages. Cystic echinococcosis, caused by the tissue-dwelling larval stage of the cestode Echinococcus granulosus, is characterised by normally subdued local inflammation. Infiltrating host cells make contact only with the acellular protective coat of the parasite, called laminated layer, particles of which can be ingested by phagocytic cells. Here we report that a particulate preparation from this layer (pLL) strongly inhibits the proliferation of macrophages in response to IL-4 or M-CSF. In addition, pLL also inhibits IL-4-driven up-regulation of Relm-α, without similarly affecting Chitinase-like 3 (Chil3/Ym1). IL-4-driven cell proliferation and up-regulation of Relm-α are both known to depend on the phosphatidylinositol (PI3K)/Akt pathway, which is dispensable for induction of Chil3/Ym1. Exposure to pLL in vitro inhibited Akt activation in response to proliferative stimuli, providing a potential mechanism for its activities. Our results suggest that the E. granulosus laminated layer exerts some of its anti-inflammatory properties through inhibition of PI3K/Akt activation and consequent limitation of macrophage proliferation

    Post-transcriptional regulatory feedback encodes JAK-STAT signal memory of interferon stimulation

    No full text
    Immune cells fine tune their responses to infection and inflammatory cues. Here, using live-cell confocal microscopy and mathematical modelling, we investigate interferon-induced JAK-STAT signalling in innate immune macrophages. We demonstrate that transient exposure to IFN-γ stimulation induces a long-term desensitisation of STAT1 signalling and gene expression responses, revealing a dose- and time-dependent regulatory feedback that controls JAK-STAT responses upon re-exposure to stimulus. We show that IFN-α/β1 elicit different level of desensitisation from IFN-γ, where cells refractory to IFN-α/β1 are sensitive to IFN-γ, but not vice versa. We experimentally demonstrate that the underlying feedback mechanism involves regulation of STAT1 phosphorylation but is independent of new mRNA synthesis and cognate receptor expression. A new feedback model of the protein tyrosine phosphatase activity recapitulates experimental data and demonstrates JAK-STAT network’s ability to decode relative changes of dose, timing, and type of temporal interferon stimulation. These findings reveal that STAT desensitisation renders cells with signalling memory of type I and II interferon stimulation, which in the future may improve administration of interferon therapy
    corecore