14 research outputs found
Asymmetric transfer hydrogenation of ketones in aqueous solution catalyzed by rhodium(III) complexes with C2-symmetric fluorene-ligands containing chiral (1R,2R)-cyclohexane-1,2-diamine
Two C2-symmetric bis(sulfonamide) ligands containing fluorene-chiral (1R,2R)-cyclohexane-1,2-diamine were complexed to RhIII(Cp*) and used as catalyst to reduce aromatic ketones. The corresponding chiral secondary alcohols were obtained in 87-100% ee and 85-99% yield, under asymmetric transfer hydrogenation (ATH) conditions using aqueous sodium formate as the hydride source. With acetophenone, 94% ee and 86-97% yield was achieved with substrate/catalyst (S/C) ratio of 10,000
Molecular detection of Leishmania infantum in rats and sand flies in the urban sewers of Barcelona, Spain
Background: Classically, dogs have been considered to be the only reservoir of leishmaniasis in urban areas. However, in a previous study, we found a 33.3% prevalence of Leishmania infantum in the spleens of Norway rats (Rattus norvegicus) sampled in the underground sewer system of the city of Barcelona (Spain). The aim of the present study was to verify, using molecular methods, the potential reservoir role of these rats in the same sewer system. Methods: A sensitive real-time PCR (qPCR) assay, DNA sequencing and phylogenetic analysis were carried out to identify and quantify the presence of L. infantum DNA in sand fly individuals captured in the same underground sewer system of Barcelona as in our previous study and in the spleens and ears of rats captured in the same sewer system. Results: Leishmania infantum DNA was found in 14 of the 27 (51.9%) sand flies identified as Phlebotomus perniciosus, and 10 of the 24 (41.7%) rats studied were infected. Leishmania infantum was found in the spleens (70%) and in the ears (40%) of the infected rats. Quantitative results revealed the presence of high loads of L. infantum in the rats studied (> 3 × 10 parasites/g ear tissue) and among the sand flies (> 34 × 10 parasites in 1 individual). Conclusions: The molecular methods used in this study demonstrated a high prevalence of L. infantum in the underground sewer populations of both R. norvegicus and P. perniciosus. These results suggest that sewer rats, in addition to dogs, are likely to act as reservoirs of leishmaniasis in cities, where sewer systems seem to offer the ideal scenario for the transmission of leishmaniasis. Therefore, to achieve the WHO 2030 target on the elimination of leishmaniasis as a public health problem successfully, an efficient control strategy against leishmaniasis in rats and sand flies should be implemented, particularly in the sewer systems of urban areas of endemic countries. Graphical Abstract: [Figure not available: see fulltext.
Alteraciones morfológicas en el tracto respiratorio de ratas wistar inducidas por vapores de la raíz de hierba del zorrillo (Petiveria alliacea) del Suroeste de México = Morphologic Alterations in the Respiratory Tract of Wistar Rats Induced by Steams of the Root of Hierba del Zorrillo (Petiveria alliacea) from Southwest of Mexico
Petiveria alliacea, es conocida con diferentes nombres según el lugar donde se le encuentre. Estudios con hojas, tallo, raíz o extractos describen múltiples usos medicinales. Sin embargo, son pocos los que describen efectos tóxicos. En este estudio se evaluó el efecto morfológico de los vapores de la raíz de P. alliacea sobre el tracto respiratorio de ratas Wistar. Se emplearon 15 ratas divididas en 5 grupos (n=3): control absoluto, 0, 5, 15 y 30 minutos post-exposición (grupos I-V, respectivamente). Las ratas se sacrificaron y se colectaron muestras representativas del tracto respiratorio que posteriormente se procesaron por la técnica histológica convencional, hasta su inclusión en bloques de parafina. Los cortes histológicos se tiñeron con H-E, tricrómico de Masson y azul de toluidina. En tráquea, bronquiolos y pulmón de las ratas de los grupos I y II se observó una histología normal. En la tráquea de los grupos III, IV y V se identificaron áreas variables de hiperplasia en el epitelio, zonas desprovistas de cilios, signos de aumento en la secreción de las células caliciformes y áreas desprovistas de epitelio que se incrementaron con el tiempo. En la lámina propia se observó congestión vascular e infiltrado mononuclear que incrementó con el tiempo. En los bronquiolos de los grupos III y IV se observó activación de las células de Clara, áreas desprovistas de epitelio, y células mononucleares en la luz bronquiolar. En el grupo V se observaron características histológicas normales. En pulmón de los grupos III y IV se identificó engrosamiento de tabiques alveolares, incremento de las fibras de colágena, congestión y extravasación capilar, además de exudado intralveolar. En el grupo V se observó aparente reversión de algunas alteraciones morfológicas de los grupos previos, aunque otras alteraciones persisten. No se observaron diferencias en el número de las células cebadas
Modelling the spatial risk of malaria through probability distribution of Anopheles maculipennis s.l. and imported cases
Malaria remains one of the most important infectious diseases globally due to its high incidence and mortality rates. The influx of infected cases from endemic to non-endemic malaria regions like Europe has resulted in a public health concern over sporadic local outbreaks. This is facilitated by the continued presence of competent Anopheles vectors in non-endemic countries.
We modelled the potential distribution of the main malaria vector across Spain using the ensemble of eight modelling techniques based on environmental parameters and the Anopheles maculipennis s.l. presence/absence data collected from 2000 to 2020. We then combined this map with the number of imported malaria cases in each municipality to detect the geographic hot spots with a higher risk of local malaria transmission.
The malaria vector occurred preferentially in irrigated lands characterized by warm climate conditions and moderate annual precipitation. Some areas surrounding irrigated lands in northern Spain (e.g. Zaragoza, Logroño), mainland areas (e.g. Madrid, Toledo) and in the South (e.g. Huelva), presented a significant likelihood of A. maculipennis s.l. occurrence, with a large overlap with the presence of imported cases of malaria.
While the risk of malaria re-emergence in Spain is low, it is not evenly distributed throughout the country. The four recorded local cases of mosquito-borne transmission occurred in areas with a high overlap of imported cases and mosquito presence. Integrating mosquito distribution with human incidence cases provides an effective tool for the quantification of large-scale geographic variation in transmission risk and pinpointing priority areas for targeted surveillance and prevention
Methionine adenosyltransferase 1a antisense oligonucleotides activate the liver-brown adipose tissue axis preventing obesity and associated hepatosteatosis
Altered methionine metabolism is associated with weight gain in obesity. The methionine adenosyltransferase (MAT), catalyzing the first reaction of the methionine cycle, plays an important role regulating lipid metabolism. However, its role in obesity, when a plethora of metabolic diseases occurs, is still unknown. By using antisense oligonucleotides (ASO) and genetic depletion of Mat1a, here, we demonstrate that Mat1a deficiency in diet-induce obese or genetically obese mice prevented and reversed obesity and obesity-associated insulin resistance and hepatosteatosis by increasing energy expenditure in a hepatocyte FGF21 dependent fashion. The increased NRF2-mediated FGF21 secretion induced by targeting Mat1a, mobilized plasma lipids towards the BAT to be catabolized, induced thermogenesis and reduced body weight, inhibiting hepatic de novo lipogenesis. The beneficial effects of Mat1a ASO were abolished following FGF21 depletion in hepatocytes. Thus, targeting Mat1a activates the liver-BAT axis by increasing NRF2-mediated FGF21 secretion, which prevents obesity, insulin resistance and hepatosteatosis.
High methionine and S-adenosylmethionine serum levels are related with obesity. Here the authors show that knockdown of methionine adenosyltransferase by using antisense oligonucleotides provides beneficial effects in obesity and comorbidities.This work was supported by Ayudas para apoyar grupos de investigacion del sistema Universitario Vasco (IT971-16) and MCIU/AEI/FEDER, UE (RTI2018-095134-B-100) (to P.A.), (RTI2018-099413-B-I00 and RED2018-102379-T) (to R.N.), PID2020119486RB-100 (to M.V.R.) and (RTI2018-096759-A-100) (to T.C.D). EFSD/Lilly European Diabetes Research Program, MICIU (PID2019-104399RB-I00), Fundacion AECC PROYE19047SABI, and Comunidad de Madrid IMMUNOTHERCAN-CM B2017/BMD-3733 (to G.S.). La CAIXA Foundation LCF/PR/HP17/52190004, MINECO-FEDER SAF2017-87301-R, AYUDAS FUNDACION BBVA A EQUIPOS DE INVESTIGACION CIENTIFICA UMBRELLA 2018 and AECC Scientific Foundation, grant name: Rare Cancers 2017 (to M.L.M.-C.). AECC Scientific Foundation (to T.C.D.). Xunta de Galicia 2020-PG015 (to R.N.) Gilead Sciences International Research Scholars Program in Liver Disease (to M.V.R.). Personal fellows: E.P.F. was awarded with Juan de la Cierva-Formacion, FJC2018-035449-I. C.F. was awarded with Sara Borrell (CD19/00078). CIC bioGUNE thanks MCIU for the Severo Ochoa Excellence Accreditation (SEV-2016-0644). The authors thank Dr. Manuel Lafitas laboratory (Getxo, Bizkaia, Spain) for his valuable help in the analysis of biochemical parameters
Effectiveness of an intervention for improving drug prescription in primary care patients with multimorbidity and polypharmacy:Study protocol of a cluster randomized clinical trial (Multi-PAP project)
This study was funded by the Fondo de Investigaciones Sanitarias ISCIII (Grant Numbers PI15/00276, PI15/00572, PI15/00996), REDISSEC (Project Numbers RD12/0001/0012, RD16/0001/0005), and the European Regional Development Fund ("A way to build Europe").Background: Multimorbidity is associated with negative effects both on people's health and on healthcare systems. A key problem linked to multimorbidity is polypharmacy, which in turn is associated with increased risk of partly preventable adverse effects, including mortality. The Ariadne principles describe a model of care based on a thorough assessment of diseases, treatments (and potential interactions), clinical status, context and preferences of patients with multimorbidity, with the aim of prioritizing and sharing realistic treatment goals that guide an individualized management. The aim of this study is to evaluate the effectiveness of a complex intervention that implements the Ariadne principles in a population of young-old patients with multimorbidity and polypharmacy. The intervention seeks to improve the appropriateness of prescribing in primary care (PC), as measured by the medication appropriateness index (MAI) score at 6 and 12months, as compared with usual care. Methods/Design: Design:pragmatic cluster randomized clinical trial. Unit of randomization: family physician (FP). Unit of analysis: patient. Scope: PC health centres in three autonomous communities: Aragon, Madrid, and Andalusia (Spain). Population: patients aged 65-74years with multimorbidity (≥3 chronic diseases) and polypharmacy (≥5 drugs prescribed in ≥3months). Sample size: n=400 (200 per study arm). Intervention: complex intervention based on the implementation of the Ariadne principles with two components: (1) FP training and (2) FP-patient interview. Outcomes: MAI score, health services use, quality of life (Euroqol 5D-5L), pharmacotherapy and adherence to treatment (Morisky-Green, Haynes-Sackett), and clinical and socio-demographic variables. Statistical analysis: primary outcome is the difference in MAI score between T0 and T1 and corresponding 95% confidence interval. Adjustment for confounding factors will be performed by multilevel analysis. All analyses will be carried out in accordance with the intention-to-treat principle. Discussion: It is essential to provide evidence concerning interventions on PC patients with polypharmacy and multimorbidity, conducted in the context of routine clinical practice, and involving young-old patients with significant potential for preventing negative health outcomes. Trial registration: Clinicaltrials.gov, NCT02866799Publisher PDFPeer reviewe
The evolution of the ventilatory ratio is a prognostic factor in mechanically ventilated COVID-19 ARDS patients
Background: Mortality due to COVID-19 is high, especially in patients requiring mechanical ventilation. The purpose of the study is to investigate associations between mortality and variables measured during the first three days of mechanical ventilation in patients with COVID-19 intubated at ICU admission. Methods: Multicenter, observational, cohort study includes consecutive patients with COVID-19 admitted to 44 Spanish ICUs between February 25 and July 31, 2020, who required intubation at ICU admission and mechanical ventilation for more than three days. We collected demographic and clinical data prior to admission; information about clinical evolution at days 1 and 3 of mechanical ventilation; and outcomes. Results: Of the 2,095 patients with COVID-19 admitted to the ICU, 1,118 (53.3%) were intubated at day 1 and remained under mechanical ventilation at day three. From days 1 to 3, PaO2/FiO2 increased from 115.6 [80.0-171.2] to 180.0 [135.4-227.9] mmHg and the ventilatory ratio from 1.73 [1.33-2.25] to 1.96 [1.61-2.40]. In-hospital mortality was 38.7%. A higher increase between ICU admission and day 3 in the ventilatory ratio (OR 1.04 [CI 1.01-1.07], p = 0.030) and creatinine levels (OR 1.05 [CI 1.01-1.09], p = 0.005) and a lower increase in platelet counts (OR 0.96 [CI 0.93-1.00], p = 0.037) were independently associated with a higher risk of death. No association between mortality and the PaO2/FiO2 variation was observed (OR 0.99 [CI 0.95 to 1.02], p = 0.47). Conclusions: Higher ventilatory ratio and its increase at day 3 is associated with mortality in patients with COVID-19 receiving mechanical ventilation at ICU admission. No association was found in the PaO2/FiO2 variation
Clustering COVID-19 ARDS patients through the first days of ICU admission. An analysis of the CIBERESUCICOVID Cohort
Background Acute respiratory distress syndrome (ARDS) can be classified into sub-phenotypes according to different inflammatory/clinical status. Prognostic enrichment was achieved by grouping patients into hypoinflammatory or hyperinflammatory sub-phenotypes, even though the time of analysis may change the classification according to treatment response or disease evolution. We aimed to evaluate when patients can be clustered in more than 1 group, and how they may change the clustering of patients using data of baseline or day 3, and the prognosis of patients according to their evolution by changing or not the cluster.Methods Multicenter, observational prospective, and retrospective study of patients admitted due to ARDS related to COVID-19 infection in Spain. Patients were grouped according to a clustering mixed-type data algorithm (k-prototypes) using continuous and categorical readily available variables at baseline and day 3.Results Of 6205 patients, 3743 (60%) were included in the study. According to silhouette analysis, patients were grouped in two clusters. At baseline, 1402 (37%) patients were included in cluster 1 and 2341(63%) in cluster 2. On day 3, 1557(42%) patients were included in cluster 1 and 2086 (57%) in cluster 2. The patients included in cluster 2 were older and more frequently hypertensive and had a higher prevalence of shock, organ dysfunction, inflammatory biomarkers, and worst respiratory indexes at both time points. The 90-day mortality was higher in cluster 2 at both clustering processes (43.8% [n = 1025] versus 27.3% [n = 383] at baseline, and 49% [n = 1023] versus 20.6% [n = 321] on day 3). Four hundred and fifty-eight (33%) patients clustered in the first group were clustered in the second group on day 3. In contrast, 638 (27%) patients clustered in the second group were clustered in the first group on day 3.Conclusions During the first days, patients can be clustered into two groups and the process of clustering patients may change as they continue to evolve. This means that despite a vast majority of patients remaining in the same cluster, a minority reaching 33% of patients analyzed may be re-categorized into different clusters based on their progress. Such changes can significantly impact their prognosis