33 research outputs found

    Lipid Vesicle Aggregation Induced by Cooling

    Get PDF
    Lipid bilayer fusion is a complex process requiring several intermediate steps. Initially, the two bilayers are brought into close contact following removal of intervening water layers and overcoming electrostatic repulsions between opposing bilayer head groups. In this study we monitor by light scattering the reversible aggregation of phosphatidylcholine single shell vesicles during which adhesion occurs but stops prior to a fusion process. Light scattering measurements of dimyristoyl-sn-glycero-3-phosphocholine (DMPC), dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) in water show that lowering the temperature of about 0.14 micron single shell vesicles of DPPC (from 20 °C to 5 °C) and about 2 micron vesicles of DSPC (from 20 °C to 15 °C), but not of 1 micron vesicles of DMPC, results in extensive aggregation within 24 hours that is reversible by an increase in temperature. Aggregation of DSPC vesicles was confirmed by direct visual observation. Orientation of lipid head groups parallel to the plane of the bilayer and consequent reduction of the negative surface charge can account for the ability of DPPC and DSPC vesicles to aggregate. Retention of negatively charged phosphates on the surface and the burial of positively charged cholines within the bilayer offer an explanation for the failure of DMPC vesicles to aggregate. Lowering the temperature of 1,2-dipalmitoyl-sn-glycero-3-phosphoserine (DPPS) vesicles from 20 °C to 5 °C failed to increase aggregation within 24 hours at Mg++/DPPS ratios that begin to initiate aggregation and fusion

    Time and cell-dependent effects of endocytosis inhibitors on the internalization of biomolecule markers and nanomaterials

    Get PDF
    Endocytosis is an essential function of cells, with key roles in the internalisation of nutrients, signal molecules and also drugs. Endocytic processes are therefore widely investigated in the context of drug delivery, and inhibitors of endocytic pathways have been used to provide information regarding uptake mechanisms of drug carrier materials. Here we describe studies in which two established inhibitors of clathrin dependent and independent endocytosis, chlorpromazine and methyl‐ÎČ‐cyclodextrin respectively, were employed to probe endocytic pathways of three cell lines chosen to represent tumour‐relevant or associated phenotypes: 3 T3 (fibroblasts), HCT 116 (colon cancer) and MGLVA‐1 (gastric cancer). For clathrin mediated endocytosis the data highlight that chlorpromazine inhibition of transferrin internalization, via clathrin dependent endocytosis, is cell and time dependent. We also show that inhibition of uptake is transient with a resumption of transferrin internalization after a maximal inhibition period. The same endocytosis inhibitors were used to probe the internalization of 50 and 100 nm carboxylated polystyrene nanoparticles (C‐PS‐NPs) as model drug delivery carriers. Flow cytometry data indicated that internalisation of C‐PS‐NPs varied considerably with the incubation time of cells with chlorpromazine or methyl‐ÎČ‐cyclodextrin, and that the effects were also markedly cell‐line dependent. These data highlight that the effects of endocytosis inhibitors on the internalisation pathways even of relatively simple nanoparticles are complex and interdependent. We suggest that mechanistic investigations of the endocytic processes which govern practical applications of nanoparticles for diagnostic and therapeutic applications should be considered on a cell, time and concentration basis

    Search for Kaluza-Klein Graviton Emission in ppˉp\bar{p} Collisions at s=1.8\sqrt{s}=1.8 TeV using the Missing Energy Signature

    Get PDF
    We report on a search for direct Kaluza-Klein graviton production in a data sample of 84 pb−1{pb}^{-1} of \ppb collisions at s\sqrt{s} = 1.8 TeV, recorded by the Collider Detector at Fermilab. We investigate the final state of large missing transverse energy and one or two high energy jets. We compare the data with the predictions from a 3+1+n3+1+n-dimensional Kaluza-Klein scenario in which gravity becomes strong at the TeV scale. At 95% confidence level (C.L.) for nn=2, 4, and 6 we exclude an effective Planck scale below 1.0, 0.77, and 0.71 TeV, respectively.Comment: Submitted to PRL, 7 pages 4 figures/Revision includes 5 figure

    Measurement of the average time-integrated mixing probability of b-flavored hadrons produced at the Tevatron

    Get PDF
    We have measured the number of like-sign (LS) and opposite-sign (OS) lepton pairs arising from double semileptonic decays of bb and bˉ\bar{b}-hadrons, pair-produced at the Fermilab Tevatron collider. The data samples were collected with the Collider Detector at Fermilab (CDF) during the 1992-1995 collider run by triggering on the existence of ΌΌ\mu \mu and eÎŒe \mu candidates in an event. The observed ratio of LS to OS dileptons leads to a measurement of the average time-integrated mixing probability of all produced bb-flavored hadrons which decay weakly, χˉ=0.152±0.007\bar{\chi} = 0.152 \pm 0.007 (stat.) ±0.011\pm 0.011 (syst.), that is significantly larger than the world average χˉ=0.118±0.005\bar{\chi} = 0.118 \pm 0.005.Comment: 47 pages, 10 figures, 15 tables Submitted to Phys. Rev.

    texturing waves

    No full text

    Architectural Multispecies Building Design: Concepts, Challenges, and Design Process

    No full text
    This perspective paper explores the concept of multispecies design in architecture, focusing on the building scale. Historically, architects have prioritized human needs, neglecting nature's integration in urban settings, leading to environmental and social challenges. To address these issues, a new multispecies approach that promotes the integration of ecological knowledge into architectural design has evolved. This paper aims to map existing concepts, challenges, and gaps in this novel multispecies approach, focusing on the building scale design process and suggests a roadmap for its implementation. This paper analyzes the existing literature and current architectural practices. This analysis is complemented by the findings from an architectural design studio that have highlighted real-world challenges not readily apparent in the literature. By promoting a multispecies architectural paradigm, this research not only underscores a transformative approach to building design but also positions multispecies design as an essential strategy in combatting the challenges of declining biodiversity and escalating climate change
    corecore