72 research outputs found

    Chemokine Receptor Ccr6 Deficiency Alters Hepatic Inflammatory Cell Recruitment and Promotes Liver Inflammation and Fibrosis.

    Get PDF
    Chronic liver diseases are characterized by a sustained inflammatory response in which chemokines and chemokine-receptors orchestrate inflammatory cell recruitment. In this study we investigated the role of the chemokine receptor CCR6 in acute and chronic liver injury. In the absence of liver injury Ccr6-/- mice presented a higher number of hepatic macrophages and increased expression of pro-inflammatory cytokines and M1 markers Tnf-α, Il6 and Mcp1. Inflammation and cell recruitment were increased after carbon tetrachloride-induced acute liver injury in Ccr6-/- mice. Moreover, chronic liver injury by carbon tetrachloride in Ccr6-/- mice was associated with enhanced inflammation and fibrosis, altered macrophage recruitment, enhanced CD4+ cells and a reduction in Th17 (CD4+IL17+) and mature dendritic (MHCII+CD11c+) cells recruitment. Clodronate depletion of macrophages in Ccr6-/- mice resulted in a reduction of hepatic pro-inflammatory and pro-fibrogenic markers in the absence and after liver injury. Finally, increased CCR6 hepatic expression in patients with alcoholic hepatitis was found to correlate with liver expression of CCL20 and severity of liver disease. In conclusion, CCR6 deficiency affects hepatic inflammatory cell recruitment resulting in the promotion of hepatic inflammation and fibrosis

    CCL20 mediates lipopolysaccharide induced liver injury and is a potential driver of inflammation and fibrosis in alcoholic hepatitis

    Get PDF
    OBJECTIVE: Chemokines are known to play an important role in the pathophysiology of alcoholic hepatitis (AH), a form of acute-on-chronic liver injury frequently mediated by gut derived lipopolysaccharide (LPS). In our study, we hypothesise that chemokine CCL20, one of the most upregulated chemokines in patients with AH, is implicated in the pathogenesis of AH by mediating LPS induced liver injury. DESIGN: CCL20 gene expression and serum levels and their correlation with disease severity were assessed in patients with AH. Cellular sources of CCL20 and its biological effects were evaluated in vitro and in vivo in chronic, acute and acute-on-chronic experimental models of carbon tetrachloride and LPS induced liver injury. RNA interference technology was used to knockdown CCL20 in vivo. RESULTS: CCL20 hepatic and serum levels were increased in patients with AH and correlated with the degree of fibrosis, portal hypertension, endotoxaemia, disease severity scores and short term mortality. Moreover, CCL20 expression was increased in animal models of liver injury and particularly under acute-on-chronic conditions. Macrophages and hepatic stellate cells (HSCs) were identified as the main CCL20 producing cell types. Silencing CCL20 in vivo reduced LPS induced aspartate aminotransferase and lactate dehydrogenase serum levels and hepatic proinflammatory and profibrogenic genes. CCL20 induced proinflammatory and profibrogenic effects in cultured primary HSCs. CONCLUSIONS: Our results suggest that CCL20 upregulation is strongly associated with LPS and may not only represent a new potential biomarker to predict outcome in patients with AH but also an important mediator linking hepatic inflammation, injury and fibrosis in AH

    Hepatic lipocalin 2 promotes liver fibrosis and portal hypertension

    Get PDF
    Advanced fibrosis and portal hypertension influence short-term mortality. Lipocalin 2 (LCN2) regulates infection response and increases in liver injury. We explored the role of intrahepatic LCN2 in human alcoholic hepatitis (AH) with advanced fibrosis and portal hypertension and in experimental mouse fibrosis. We found hepatic LCN2 expression and serum LCN2 level markedly increased and correlated with disease severity and portal hypertension in patients with AH. In control human livers, LCN2 expressed exclusively in mononuclear cells, while its expression was markedly induced in AH livers, not only in mononuclear cells but also notably in hepatocytes. Lcn2-/- mice were protected from liver fibrosis caused by either ethanol or CCl4 exposure. Microarray analysis revealed downregulation of matrisome, cell cycle and immune related gene sets in Lcn2-/- mice exposed to CCl4, along with decrease in Timp1 and Edn1 expression. Hepatic expression of COL1A1, TIMP1 and key EDN1 system components were elevated in AH patients and correlated with hepatic LCN2 expression. In vitro, recombinant LCN2 induced COL1A1 expression. Overexpression of LCN2 increased HIF1A that in turn mediated EDN1 upregulation. LCN2 contributes to liver fibrosis and portal hypertension in AH and could represent a new therapeutic target

    Kinase analysis in alcoholic hepatitis identifies p90RSK as a potential mediator of liver fibrogenesis

    Get PDF
    Objective Alcoholic hepatitis (AH) is often associated with advanced fibrosis, which negatively impacts survival. We aimed at identifying kinases deregulated in livers from patients with AH and advanced fibrosis in order to discover novel molecular targets. Design Extensive phosphoprotein analysis by reverse phase protein microarrays was performed in AH (n=12) and normal human livers (n=7). Ribosomal S6 kinase (p90RSK) hepatic expression was assessed by qPCR, Western blot and immunohistochemistry. Kaempferol was used as a selective pharmacological inhibitor of the p90RSK pathway to assess the regulation of experimentally-induced liver fibrosis and injury, using in vivo and in vitro approaches. Results Proteomic analysis identified p90RSK as one of the most deregulated kinases in AH. Hepatic p90RSK gene and protein expression was also upregulated in livers with chronic liver disease. Immunohistochemistry studies showed increased p90RSK staining in areas of active fibrogenesis in cirrhotic livers. Therapeutic administration of kaempferol to carbon tetrachloride-treated mice resulted in decreased hepatic collagen deposition, and expression of profibrogenic and proinflammatory genes, compared to vehicle administration. In addition, kaempferol reduced the extent of hepatocellular injury and degree of apoptosis. In primary hepatic stellate cells, kaempferol and small interfering RNA decreased activation of p90RSK, which in turn regulated key profibrogenic actions. In primary hepatocytes, kaempferol attenuated proapoptotic signalling. Conclusions p90RSK is upregulated in patients with chronic liver disease and mediates liver fibrogenesis in vivo and in vitro. These results suggest that the p90RSK pathway could be a new therapeutic approach for liver diseases characterised by advanced fibrosis

    LPS-TLR4 Pathway mediates ductular cell expansion in alcoholic hepatitis.

    Get PDF
    Alcoholic hepatitis (AH) is the most severe form of alcoholic liver disease for which there are no effective therapies. Patients with AH show impaired hepatocyte proliferation, expansion of inefficient ductular cells and high lipopolysaccharide (LPS) levels. It is unknown whether LPS mediates ductular cell expansion. We performed transcriptome studies and identified keratin 23 (KRT23) as a new ductular cell marker. KRT23 expression correlated with mortality and LPS serum levels. LPS-TLR4 pathway role in ductular cell expansion was assessed in human and mouse progenitor cells, liver slices and liver injured TLR4 KO mice. In AH patients, ductular cell expansion correlated with portal hypertension and collagen expression. Functional studies in ductular cells showed that KRT23 regulates collagen expression. These results support a role for LPS-TLR4 pathway in promoting ductular reaction in AH. Maneuvers aimed at decreasing LPS serum levels in AH patients could have beneficial effects by preventing ductular reaction development

    Integrative genomic analysis of methylphenidate response in attention-deficit/hyperactivity disorder

    Get PDF
    Methylphenidate (MPH) is the most frequently used pharmacological treatment in children with attention-deficit/hyperactivity disorder (ADHD). However, a considerable interindividual variability exists in clinical outcome. Thus, we performed a genome-wide association study of MPH efficacy in 173 ADHD paediatric patients. Although no variant reached genome-wide significance, the set of genes containing single-nucleotide polymorphisms (SNPs) nominally associated with MPH response (P < 0.05) was significantly enriched for candidates previously studied in ADHD or treatment outcome. We prioritised the nominally significant SNPs by functional annotation and expression quantitative trait loci (eQTL) analysis in human brain, and we identified 33 SNPs tagging cis-eQTL in 32 different loci (referred to as eSNPs and eGenes, respectively). Pathway enrichment analyses revealed an over-representation of genes involved in nervous system development and function among the eGenes. Categories related to neurological diseases, psychological disorders and behaviour were also significantly enriched. We subsequently meta-analysed the association with clinical outcome for the 33 eSNPs across the discovery sample and an independent cohort of 189 ADHD adult patients (target sample) and we detected 15 suggestive signals. Following this comprehensive strategy, our results provide a better understanding of the molecular mechanisms implicated in MPH treatment effects and suggest promising candidates that may encourage future studies

    Shared genetic background between children and adults with attention deficit/hyperactivity disorder

    Get PDF
    Attention deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder characterized by age-inappropriate symptoms of inattention, impulsivity, and hyperactivity that persist into adulthood in the majority of the diagnosed children. Despite several risk factors during childhood predicting the persistence of ADHD symptoms into adulthood, the genetic architecture underlying the trajectory of ADHD over time is still unclear. We set out to study the contribution of common genetic variants to the risk for ADHD across the lifespan by conducting meta-analyses of genome-wide association studies on persistent ADHD in adults and ADHD in childhood separately and jointly, and by comparing the genetic background between them in a total sample of 17,149 cases and 32,411 controls. Our results show nine new independent loci and support a shared contribution of common genetic variants to ADHD in children and adults. No subgroup heterogeneity was observed among children, while this group consists of future remitting and persistent individuals. We report similar patterns of genetic correlation of ADHD with other ADHD-related datasets and different traits and disorders among adults, children, and when combining both groups. These findings confirm that persistent ADHD in adults is a neurodevelopmental disorder and extend the existing hypothesis of a shared genetic architecture underlying ADHD and different traits to a lifespan perspective

    Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders

    Get PDF
    Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe

    Revista (La Vanguardia)

    No full text
    corecore