38 research outputs found

    Transcriptional Regulation of Arabidopsis LEAFY COTYLEDON2

    Full text link

    A wide field-of-view low-resolution spectrometer at APEX: Instrument design and scientific forecast

    Get PDF
    Context. Characterising the large-scale structure in the Universe from present times to the high redshift epoch of reionisation is essential to constraining the cosmology, the history of star formation, and reionisation, to measuring the gas content of the Universe, and to obtaining a better understanding of the physical processes that drive galaxy formation and evolution. Using the integrated emission from unresolved galaxies or gas clouds, line intensity mapping (LIM) provides a new observational window to measure the larger properties of structures. This very promising technique motivates the community to plan for LIM experiments. Aims. We describe the development of a large field-of-view instrument, named CONCERTO (for CarbON CII line in post-rEionisation and ReionisaTiOn epoch), operating in the range 130-310 GHz from the APEX 12-m telescope (5100 m above sea level). CONCERTO is a low-resolution spectrometer based on the lumped element kinetic inductance detectors (LEKID) technology. Spectra are obtained using a fast Fourier transform spectrometer (FTS), coupled to a dilution cryostat with a base temperature of 0.1 K. Two two kilo-pixel arrays of LEKID are mounted inside the cryostat that also contains the cold optics and the front-end electronics. Methods. We present, in detail, the technological choices leading to the instrumental concept, together with the design and fabrication of the instrument and preliminary laboratory tests on the detectors. We also give our best estimates for CONCERTO sensitivity and give predictions for two of the main scientific goals of CONCERTO, that is, a [CII]-intensity mapping survey and observations of galaxy clusters. Results. We provide a detailed description of the instrument design. Based on realistic comparisons with existing instruments developed by our group (NIKA, NIKA2, and KISS), and on the laboratory characterisation of our detectors, we provide an estimate for CONCERTO sensitivity on the sky. Finally, we describe, in detail, two of the main scientific goals offered by CONCERTO at APEX

    Aquaporins: important but elusive drug targets.

    Get PDF
    The aquaporins (AQPs) are a family of small, integral membrane proteins that facilitate water transport across the plasma membranes of cells in response to osmotic gradients. Data from knockout mice support the involvement of AQPs in epithelial fluid secretion, cell migration, brain oedema and adipocyte metabolism, which suggests that modulation of AQP function or expression could have therapeutic potential in oedema, cancer, obesity, brain injury, glaucoma and several other conditions. Moreover, loss-of-function mutations in human AQPs cause congenital cataracts (AQP0) and nephrogenic diabetes insipidus (AQP2), and autoantibodies against AQP4 cause the autoimmune demyelinating disease neuromyelitis optica. Although some potential AQP modulators have been identified, challenges associated with the development of better modulators include the druggability of the target and the suitability of the assay methods used to identify modulators

    Deep Neural Networks for Simultaneously Capturing Public Topics and Sentiments During a Pandemic: Application on a COVID-19 Tweet Data Set

    No full text
    International audienceBackground Public engagement is a key element for mitigating pandemics, and a good understanding of public opinion could help to encourage the successful adoption of public health measures by the population. In past years, deep learning has been increasingly applied to the analysis of text from social networks. However, most of the developed approaches can only capture topics or sentiments alone but not both together. Objective Here, we aimed to develop a new approach, based on deep neural networks, for simultaneously capturing public topics and sentiments and applied it to tweets sent just after the announcement of the COVID-19 pandemic by the World Health Organization (WHO). Methods A total of 1,386,496 tweets were collected, preprocessed, and split with a ratio of 80:20 into training and validation sets, respectively. We combined lexicons and convolutional neural networks to improve sentiment prediction. The trained model achieved an overall accuracy of 81% and a precision of 82% and was able to capture simultaneously the weighted words associated with a predicted sentiment intensity score. These outputs were then visualized via an interactive and customizable web interface based on a word cloud representation. Using word cloud analysis, we captured the main topics for extreme positive and negative sentiment intensity scores. Results In reaction to the announcement of the pandemic by the WHO, 6 negative and 5 positive topics were discussed on Twitter. Twitter users seemed to be worried about the international situation, economic consequences, and medical situation. Conversely, they seemed to be satisfied with the commitment of medical and social workers and with the collaboration between people. Conclusions We propose a new method based on deep neural networks for simultaneously extracting public topics and sentiments from tweets. This method could be helpful for monitoring public opinion during crises such as pandemics

    Assessing climate change impacts on sorghum and millet yields in the Sudanian and Sahelian savannas of West Africa

    No full text
    International audienceSub-Saharan West Africa is a vulnerable region where a better quantification and understanding of the impact of climate change on crop yields is urgently needed. Here, we have applied the process-based crop model SARRA-H calibrated and validated over multi-year field trials and surveys at eight contrasting sites in terms of climate and agricultural practices in Senegal, Mali, Burkina Faso and Niger. The model gives a reasonable correlation with observed yields of sorghum and millet under a range of cultivars and traditional crop management practices. We applied the model to more than 7000 simulations of yields of sorghum and millet for 35 stations across West Africa and under very different future climate conditions. We took into account 35 possible climate scenarios by combining precipitation anomalies from -20% to 20% and temperature anomalies from +0 to +6 degrees C. We found that most of the 35 scenarios (31/35) showed a negative impact on yields, up to -41% for +6 degrees C/ - 20% rainfall. Moreover, the potential future climate impacts on yields are very different from those recorded in the recent past. This is because of the increasingly adverse role of higher temperatures in reducing crop yields, irrespective of rainfall changes. When warming exceeds +2 degrees C, negative impacts caused by temperature rise cannot be counteracted by any rainfall change. The probability of a yield reduction appears to be greater in the Sudanian region (southern Senegal, Mali, Burkina Faso, northern Togo and Benin), because of an exacerbated sensitivity to temperature changes compared to the Sahelian region (Niger, Mali, northern parts of Senegal and Burkina Faso), where crop yields are more sensitive to rainfall change. Finally, our simulations show that the photoperiod-sensitive traditional cultivars of millet and sorghum used by local farmers for centuries seem more resilient to future climate conditions than modern cultivars bred for their high yield potential (-28% versus -40% for the +4 degrees C/ - 20% scenario). Photoperiod-sensitive cultivars counteract the effect of temperature increase on shortening cultivar duration and thus would likely avoid the need to shift to cultivars with a greater thermal time requirement. However, given the large difference in mean yields of the modern versus traditional varieties, the modern varieties would still yield more under optimal fertility conditions in a warmer world, even if they are more affected by climate change

    Light behind the curtain: photoregulation of nuclear architecture and chromatin dynamics in plants

    Get PDF
    Light is a powerful stimulus regulating many aspects of plant development and phenotypic plasticity. Plants sense light through the action of specialized photoreceptor protein families that absorb different wavelengths and intensities of light. Recent discoveries in the area of photobiology have uncovered photoreversible changes in nuclear organization correlated with transcriptional regulation patterns that lead to de-etiolation and photoacclimation. Novel signalling components bridging photoreceptor activation with chromatin remodelling and regulation of gene expression have been discovered. Moreover, coregulated gene loci have been shown to relocate to the nuclear periphery in response to light. The study of photoinduced changes in nuclear architecture is a flourishing area leading to major discoveries that will allow us to better understand how highly conserved mechanisms underlying genomic reprogramming are triggered by environmental and endogenous stimuli. This review aims to discuss fundamental and innovative reports demonstrating how light triggers changes in chromatin and nuclear architecture during photomorphogenesis

    Manufacturing Status of the IFMIF LIPAc SRF Linac

    No full text
    International audienceThis paper gives the fabrication status of the IFMIF cryomodule. This cryomodule will be part of the Linear IFMIF Prototype Accelerator (LIPAc) whose construction is ongoing at Rokkasho, Japan. It is a full scale of one of the IFMIF accelerator, from the injector to the first cryomodule. The cryomodule contains all the necessary equipment to transport and accelerate a 125 mA deuteron beam from an input energy of 5 MeV up to the output energy of 9 MeV. It consists of a horizontal vacuum tank of around 6 m long, 3 m high and 2.0 m wide, which includes 8 superconducting HWRs for beam acceleration, working at 175 MHz and at 4.45 K, 8 Power Couplers to provide RF power to cavities up to 70 kW CW in LIPAc case and 200 kW CW in IFMIF case, and 8 Solenoid Packages as focusing elements
    corecore