358 research outputs found

    Infrared properties of propagators in Landau-gauge pure Yang-Mills theory at finite temperature

    Get PDF
    The finite-temperature behavior of gluon and of Faddeev-Popov-ghost propagators is investigated for pure SU(2) Yang-Mills theory in Landau gauge. We present nonperturbative results, obtained using lattice simulations and Dyson-Schwinger equations. Possible limitations of these two approaches, such as finite-volume effects and truncation artifacts, are extensively discussed. Both methods suggest a very different temperature dependence for the magnetic sector when compared to the electric one. In particular, a clear thermodynamic transition seems to affect only the electric sector. These results imply in particular the confinement of transverse gluons at all temperatures and they can be understood inside the framework of the so-called Gribov-Zwanziger scenario of confinement.Comment: 25 pages, 14 figures, 2 tables, minor changes of typographical and design character, some minor errors corrected, version to appear in PR

    Three dimensional fermionic determinants, Chern-Simons and nonlinear field redefinitions

    Full text link
    The three dimensional abelian fermionic determinant of a two component massive spinor in flat euclidean space-time is resetted to a pure Chern-Simons action through a nonlinear redefinition of the gauge field.Comment: 18 pages, latex2

    A-stable Runge-Kutta methods for semilinear evolution equations

    Get PDF
    We consider semilinear evolution equations for which the linear part generates a strongly continuous semigroup and the nonlinear part is sufficiently smooth on a scale of Hilbert spaces. In this setting, we prove the existence of solutions which are temporally smooth in the norm of the lowest rung of the scale for an open set of initial data on the highest rung of the scale. Under the same assumptions, we prove that a class of implicit, AA-stable Runge--Kutta semidiscretizations in time of such equations are smooth as maps from open subsets of the highest rung into the lowest rung of the scale. Under the additional assumption that the linear part of the evolution equation is normal or sectorial, we prove full order convergence of the semidiscretization in time for initial data on open sets. Our results apply, in particular, to the semilinear wave equation and to the nonlinear Schr\"odinger equation

    Screening masses in quenched (2+1)d Yang-Mills theory: universality from dynamics?

    Full text link
    We compute the spectrum of gluonic screening-masses in the 0++0^{++} channel of quenched 3d Yang-Mills theory near the phase-transition. Our finite-temperature lattice simulations are performed at scaling region, using state-of-art techniques for thermalization and spectroscopy, which allows for thorough data extrapolations to thermodynamic limit. Ratios among mass-excitations with the same quantum numbers on the gauge theory, 2d Ising and λϕ4\lambda\phi^{4} models are compared, resulting in a nice agreement with predictions from universality. In addition, a gauge-to-scalar mapping, previously employed to fit QCD Green's functions at deep IR, is verified to dynamically describe these universal spectroscopic patternsComment: 15 pages, 4 eps figures. Revised version, to appear in Nucl. Phys.

    Color Confinement, Quark Pair Creation and Dynamical Chiral-Symmetry Breaking in the Dual Ginzburg-Landau Theory

    Full text link
    We study the color confinement, the qq-qˉ\bar q pair creation and the dynamical chiral-symmetry breaking of nonperturbative QCD by using the dual Ginzburg-Landau theory, where QCD-monopole condensation plays an essential role on the nonperturbative dynamics in the infrared region. As a result of the dual Meissner effect, the linear static quark potential, which characterizes the quark confinement, is obtained in the long distance within the quenched approximation. We obtain a simple expression for the string tension similar to the energy per unit length of a vortex in the superconductivity physics. The dynamical effect of light quarks on the quark confining potential is investigated in terms of the infrared screening effect due to the qq-qˉ\bar q pair creation or the cut of the hadronic string. The screening length of the potential is estimated by using the Schwinger formula for the qq-qˉ\bar q pair creation. We introduce the corresponding infrared cutoff to the strong long-range correlation factor in the gluon propagator as a dynamical effect of light quarks, and obtain a compact formula of the quark potential including the screening effect in the infrared region. We investigate the dynamical chiral-symmetry breaking by using the Schwinger-Dyson equation, where the gluon propagator includes the nonperturbative effect related toComment: 37 pages, plain TeX (using `phyzzx' macro), (( 8 figures - available on request from [email protected] )

    Effective Action for QED with Fermion Self-Interaction in D=2 and D=3 Dimensions

    Get PDF
    In this work we discuss the effect of the quartic fermion self-interaction of Thirring type in QED in D=2 and D=3 dimensions. This is done through the computation of the effective action up to quadratic terms in the photon field. We analyze the corresponding nonlocal photon propagators nonperturbatively in % \frac{k}{m}, where k is the photon momentum and m the fermion mass. The poles of the propagators were determined numerically by using the Mathematica software. In D=2 there is always a massless pole whereas for strong enough Thirring coupling a massive pole may appear . For D=3 there are three regions in parameters space. We may have one or two massive poles or even no pole at all. The inter-quark static potential is computed analytically in D=2. We notice that the Thirring interaction contributes with a screening term to the confining linear potential of massive QED_{2}. In D=3 the static potential must be calculated numerically. The screening nature of the massive QED3_{3} prevails at any distance, indicating that this is a universal feature of % D=3 electromagnetic interaction. Our results become exact for an infinite number of fermion flavors.Comment: Latex, 13 pages, 3 figure

    Quadratic Effective Action for QED in D=2,3 Dimensions

    Get PDF
    We calculate the effective action for Quantum Electrodynamics (QED) in D=2,3 dimensions at the quadratic approximation in the gauge fields. We analyse the analytic structure of the corresponding nonlocal boson propagators nonperturbatively in k/m. In two dimensions for any nonzero fermion mass, we end up with one massless pole for the gauge boson . We also calculate in D=2 the effective potential between two static charges separated by a distance L and find it to be a linearly increasing function of L in agreement with the bosonized theory (massive Sine-Gordon model). In three dimensions we find nonperturbatively in k/m one massive pole in the effective bosonic action leading to screening. Fitting the numerical results we derive a simple expression for the functional dependence of the boson mass upon the dimensionless parameter e^{2}/m .Comment: 10 pages, 2 figure

    Temperature dependence of the anomalous effective action of fermions in two and four dimensions

    Get PDF
    The temperature dependence of the anomalous sector of the effective action of fermions coupled to external gauge and pseudo-scalar fields is computed at leading order in an expansion in the number of Lorentz indices in two and four dimensions. The calculation preserves chiral symmetry and confirms that a temperature dependence is compatible with axial anomaly saturation. The result checks soft-pions theorems at zero temperature as well as recent results in the literature for the pionic decay amplitude into static photons in the chirally symmetric phase. The case of chiral fermions is also considered.Comment: RevTex, 19 pages, no figures. References adde
    • 

    corecore