137 research outputs found
Semiclassical approximations for Hamiltonians with operator-valued symbols
We consider the semiclassical limit of quantum systems with a Hamiltonian
given by the Weyl quantization of an operator valued symbol. Systems composed
of slow and fast degrees of freedom are of this form. Typically a small
dimensionless parameter controls the separation of time
scales and the limit corresponds to an adiabatic limit, in
which the slow and fast degrees of freedom decouple. At the same time
is the semiclassical limit for the slow degrees of freedom.
In this paper we show that the -dependent classical flow for the
slow degrees of freedom first discovered by Littlejohn and Flynn, coming from
an \epsi-dependent classical Hamilton function and an -dependent
symplectic form, has a concrete mathematical and physical meaning: Based on
this flow we prove a formula for equilibrium expectations, an Egorov theorem
and transport of Wigner functions, thereby approximating properties of the
quantum system up to errors of order . In the context of Bloch
electrons formal use of this classical system has triggered considerable
progress in solid state physics. Hence we discuss in some detail the
application of the general results to the Hofstadter model, which describes a
two-dimensional gas of non-interacting electrons in a constant magnetic field
in the tight-binding approximation.Comment: Final version to appear in Commun. Math. Phys. Results have been
strengthened with only minor changes to the proofs. A section on the
Hofstadter model as an application of the general theory was added and the
previous section on other applications was remove
Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up
Calibration of the relative response of the individual channels of the barrel electromagnetic calorimeter of the CMS detector was accomplished, before installation, with cosmic ray muons and test beams. One fourth of the calorimeter was exposed to a beam of high energy electrons and the relative calibration of the channels, the intercalibration, was found to be reproducible to a precision of about 0.3%. Additionally, data were collected with cosmic rays for the entire ECAL barrel during the commissioning phase. By comparing the intercalibration constants obtained with the electron beam data with those from the cosmic ray data, it is demonstrated that the latter provide an intercalibration precision of 1.5% over most of the barrel ECAL. The best intercalibration precision is expected to come from the analysis of events collected in situ during the LHC operation. Using data collected with both electrons and pion beams, several aspects of the intercalibration procedures based on electrons or neutral pions were investigated
Multiple shades of grey: Opening the black box of public sector executives' hybrid role identities
Public sector reforms of recent decades in Europe have promoted managerialism and aimed at introducing private sector thinking and practices. However, with regard to public sector executives' self-understanding, managerial role identities have not replaced bureaucratic ones; rather, components from both paradigms have combined. In this article, we introduce a bi-dimensional approach (attitudes and practices) that allows for different combinations and forms of hybridity. Empirically, we explore the role identities of public sector executives across Europe, building on survey data from over 7,000 top public officials in 19 countries (COCOPS survey). We identify country-level profiles, as well as patterns across countries, and find that administrative traditions can account for these profiles and patterns only to a limited extent. Rather, they have to be complemented by factors such as stability of the institutional environment (indicating lower shares of hybrid combinations) or extent of reform pressures (indicating higher shares of hybrid combinations)
A method for real-time classification of insect vectors of mosaic and brown streak disease in cassava plants for future implementation within a low-cost, handheld, in-field multispectral imaging sensor
Background
The paper introduces a multispectral imaging system and data-processing approach for the identification and discrimination of morphologically indistinguishable cryptic species of the destructive crop pest, the whitefly Bemisia tabaci. This investigation and the corresponding system design, was undertaken in two phases under controlled laboratory conditions. The first exploited a prototype benchtop variant of the proposed sensor system to analyse four cryptic species of whitefly reared under similar conditions. The second phase, of the methodology development, employed a commercial high-precision laboratory hyperspectral imager to recover reference data from five cryptic species of whitefly, immobilized through flash freezing, and taken from across four feeding environments.
Results
The initial results, for the single feeding environment, showed that a correct species classification could be achieved in 85–95% of cases, utilising linear Partial Least Squares approaches. The robustness of the classification approach was then extended both in terms of the automated spatial extraction of the most pertinent insect body parts, to assist with the spectral classification model, as well as the incorporation of a non-linear Support Vector Classifier to maintain the overall classification accuracy at 88–98%, irrespective of the feeding and crop environment.
Conclusion
This study demonstrates that through an integration of both the spatial data, associated with the multispectral images being used to separate different regions of the insect, and subsequent spectral analysis of those sub-regions, that B. tabaci viral vectors can be differentiated from other cryptic species, that appear morphologically indistinguishable to a human observer, with an accuracy of up to 98%. The implications for the engineering design for an in-field, handheld, sensor system is discussed with respect to the learning gained from this initial stage of the methodology development
Energy Resolution Performance of the CMS Electromagnetic Calorimeter
The energy resolution performance of the CMS lead tungstate crystal electromagnetic calorimeter is presented. Measurements were made with an electron beam using a fully equipped supermodule of the calorimeter barrel. Results are given both for electrons incident on the centre of crystals and for electrons distributed uniformly over the calorimeter surface. The electron energy is reconstructed in matrices of 3 times 3 or 5 times 5 crystals centred on the crystal containing the maximum energy. Corrections for variations in the shower containment are applied in the case of uniform incidence. The resolution measured is consistent with the design goals
- …