49 research outputs found

    Extraction of the πNN\pi NN coupling constant from NN scattering data

    Full text link
    We reexamine Chew's method for extracting the πNN\pi NN coupling constant from np differential cross section measurements. Values for this coupling are extracted below 350 MeV, in the potential model region, and up to 1 GeV. The analyses to 1~GeV have utilized 55 data sets. We compare these results to those obtained via χ2\chi^2 mapping techniques. We find that these two methods give consistent results which are in agreement with previous Nijmegen determinations.Comment: 12 pages of text plus 2 figures. Revtex file and postscript figures available via anonymous FTP at ftp://clsaid.phys.vt.edu/pub/n

    Updated resonance photo-decay amplitudes to 2 GeV

    Get PDF
    We present the results of an energy-dependent and set of single-energy partial-wave analyses of single-pion photoproduction data. These analyses extend from threshold to 2 GeV in the laboratory photon energy, and update our previous analyses to 1.8 GeV. Photo-decay amplitudes are extracted for the baryon resonances within this energy range. We consider two photoproduction sum rules and the contributions of two additional resonance candidates found in our most recent analysis of πN\pi N elastic scattering data. Comparisons are made with previous analyses.Comment: Revtex, 26 pages, 3 figures. Postscript figures available from ftp://clsaid.phys.vt.edu/pub/pr or indirectly from http://clsaid.phys.vt.edu/~CAPS

    World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions

    Get PDF
    BACKGROUND: To help adapt cardiovascular disease risk prediction approaches to low-income and middle-income countries, WHO has convened an effort to develop, evaluate, and illustrate revised risk models. Here, we report the derivation, validation, and illustration of the revised WHO cardiovascular disease risk prediction charts that have been adapted to the circumstances of 21 global regions. METHODS: In this model revision initiative, we derived 10-year risk prediction models for fatal and non-fatal cardiovascular disease (ie, myocardial infarction and stroke) using individual participant data from the Emerging Risk Factors Collaboration. Models included information on age, smoking status, systolic blood pressure, history of diabetes, and total cholesterol. For derivation, we included participants aged 40-80 years without a known baseline history of cardiovascular disease, who were followed up until the first myocardial infarction, fatal coronary heart disease, or stroke event. We recalibrated models using age-specific and sex-specific incidences and risk factor values available from 21 global regions. For external validation, we analysed individual participant data from studies distinct from those used in model derivation. We illustrated models by analysing data on a further 123 743 individuals from surveys in 79 countries collected with the WHO STEPwise Approach to Surveillance. FINDINGS: Our risk model derivation involved 376 177 individuals from 85 cohorts, and 19 333 incident cardiovascular events recorded during 10 years of follow-up. The derived risk prediction models discriminated well in external validation cohorts (19 cohorts, 1 096 061 individuals, 25 950 cardiovascular disease events), with Harrell's C indices ranging from 0·685 (95% CI 0·629-0·741) to 0·833 (0·783-0·882). For a given risk factor profile, we found substantial variation across global regions in the estimated 10-year predicted risk. For example, estimated cardiovascular disease risk for a 60-year-old male smoker without diabetes and with systolic blood pressure of 140 mm Hg and total cholesterol of 5 mmol/L ranged from 11% in Andean Latin America to 30% in central Asia. When applied to data from 79 countries (mostly low-income and middle-income countries), the proportion of individuals aged 40-64 years estimated to be at greater than 20% risk ranged from less than 1% in Uganda to more than 16% in Egypt. INTERPRETATION: We have derived, calibrated, and validated new WHO risk prediction models to estimate cardiovascular disease risk in 21 Global Burden of Disease regions. The widespread use of these models could enhance the accuracy, practicability, and sustainability of efforts to reduce the burden of cardiovascular disease worldwide. FUNDING: World Health Organization, British Heart Foundation (BHF), BHF Cambridge Centre for Research Excellence, UK Medical Research Council, and National Institute for Health Research

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Defective ATG16L1-mediated removal of IRE1α drives Crohn's disease-like ileitis.

    Get PDF
    ATG16L1T300A^{T300A}, a major risk polymorphism in Crohn's disease (CD), causes impaired autophagy, but it has remained unclear how this predisposes to CD. In this study, we report that mice with Atg16l1 deletion in intestinal epithelial cells (IECs) spontaneously develop transmural ileitis phenocopying ileal CD in an age-dependent manner, driven by the endoplasmic reticulum (ER) stress sensor IRE1α. IRE1α accumulates in Paneth cells of Atg16l1ΔIEC^{ΔIEC} mice, and humans homozygous for ATG16L1T300A^{T300A} exhibit a corresponding increase of IRE1α in intestinal epithelial crypts. In contrast to a protective role of the IRE1β isoform, hyperactivated IRE1α also drives a similar ileitis developing earlier in life in Atg16l1;Xbp1ΔIEC^{ΔIEC} mice, in which ER stress is induced by deletion of the unfolded protein response transcription factor XBP1. The selective autophagy receptor optineurin interacts with IRE1α, and optineurin deficiency amplifies IRE1α levels during ER stress. Furthermore, although dysbiosis of the ileal microbiota is present in Atg16l1;Xbp1ΔIEC^{ΔIEC} mice as predicted from impaired Paneth cell antimicrobial function, such structural alteration of the microbiota does not trigger ileitis but, rather, aggravates dextran sodium sulfate-induced colitis. Hence, we conclude that defective autophagy in IECs may predispose to CD ileitis via impaired clearance of IRE1α aggregates during ER stress at this site.This study was supported by the European Research Council under the European Community’s Seventh Framework Program (grant FP7/2007-2013)/ERC, agreement no. 260961 to A. Kaser and grant HORIZON2020/ERC, agreement no. 648889 to A. Kaser), the Wellcome Trust (Investigator Award 106260/Z/14/Z to A. Kaser and Principal Research Fellowship 2008/Z/16/Z to D. Ron), the Cambridge Biomedical Research Centre (A. Kaser), a Medical Research Council PhD for clinicians training fellowship (grant MR/N001893/1 to J. Bhattacharyya), fellowships from the European Crohn’s and Colitis Organization (M. Tschurtschenthaler and T.E. Adolph), the Research Training Group Genes, Environment, and Inflammation supported by the Deutsche Forschungsgemeinschaft (grant RTG 1743/1 to P. Rosenstiel), the SFB877 subproject B9 and CLVIII ExC 306 Inflammation at Interfaces (P. Rosenstiel), and the National Institutes of Health (grants DK044319, DK051362, DK053056, and DK088199 to the Harvard Digestive Diseases Center and grant DK0034854 to R.S. Blumberg)

    Software protection system : binary control flow obfuscation for portable executables

    No full text
    With the advancement of reverse engineering technology, the rise in software piracy and program hacking is becoming a worrying factor for software developers. Software developers are always on the lookout for cost-effective measures to protect their software. Even though there are no definite guarantees in software protection, it is possible to devise a complex obfuscation technique to make program reverse-engineering time-consuming and impracticable. Binary code obfuscation demonstrates the ability to obscure program structure, content and behavior while retaining program functionality. This project features a custom devised obfuscation design that incorporates several modified binary-level obfuscation techniques. These obfuscation techniques include control flow flattening and branch conversion and they are directed at the control flow of a program to hide its intended logic and behavior. The proposed obfuscation design is then tested and implemented into a working prototype that serves as an automated obfuscator for windows portable executables (PE). Unlike other obfuscation techniques implemented at source-code level, the obfuscator performs direct binary code modifications to the targeted PE program. Obfuscated programs are then evaluated against several performance metrics to determine the efficiency of the proposed obfuscation. Experimental results indicate high confusion potency and resilience in the obfuscation techniques. These factors represent how well the obfuscation can confuse and thwart disassembly.Bachelor of Engineering (Computer Science

    Unit-Vector RMS (URMS) as a Tool to Analyze Molecular Dynamics Trajectories

    No full text
    The Unit-vector RMS (URMS) is a new technique to compare protein chains and to detect similarities of chain segments. It has a number of unique features that include exceptionally weak dependence on the length of the chain and efficient detection of substructure similarities. Two molecular dynamics simulations of proteins in the neighborhood of their native states are used to test the performance of the URMS. The first simulation is of a solvated myoglobin and the second is of the protein MHC. In accord with previous studies the secondary structure elements (helices or sheets) are found to be relatively, moving rigidly among flexible loops. In addition to these tests, folding trajectories of C peptides are analyzed, revealing a folding nucleus of seven amino acids

    Baylor University Roundtable on The Corporate Mission, CEO Pay, and Improving the Dialogue with Investors

    No full text
    A small group of academics and practitioners discusses four major controversies in the theory and practice of corporate finance: Copyright Copyright (c) 2010 Morgan Stanley.
    corecore