Richard A. Arndt, Igor I. Strakovsky ${ }^{\dagger}$ and Ron L. Workman<br>Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

(September 5, 1995)


#### Abstract

We present the results of an energy-dependent and set of single-energy partial-wave analyses of single-pion photoproduction data. These analyses extend from threshold to 2 GeV in the laboratory photon energy, and update our previous analyses to 1.8 GeV . Photo-decay amplitudes are extracted for the baryon resonances within this energy range. We consider two photoproduction sum rules and the contributions of two additional resonance candidates found in our most recent analysis of $\pi N$ elastic scattering data. Comparisons are made with previous analyses.


PACS numbers: 11.80.Et, 14.20.Gk, 25.20.Lj

## I. INTRODUCTION

The study of baryon resonances and their electromagnetic decays is expected to see a resurgence as CEBAF becomes fully operational. The resulting flood of very precise photoand electro-production data will provide a challenge for data analysts and model-builders alike. For many of these reactions, single-pion photoproduction serves as a "bench mark". In addition to providing the photo-decay amplitudes for resonances with appreciable couplings to the $\pi N$ channel, it fixes the $Q^{2}=0$ point for pion electroproduction analyses. The amplitudes from these analyses have also been utilized in evaluating a number of sum rules which test the predictions of Chiral Perturbation Theory (ChPT) and extended current algebra. We will briefly discuss the status of two such sum rules in Section IV.

The present analysis is a significant improvement on our previously published result [1] for three main reasons. The database was carefully reexamined in order to check the assignments of statistical and systematic errors. This resulted in a number of changes which are discussed in Section II. The upper limit of our energy range was increased from 1.8 GeV to 2 GeV (in order to better regulate the solution near 1.8 GeV ). Finally, the effect of two new resonance candidates was considered. These were found in a search for possible "missing resonances", as described in our most recent analysis [2] of elastic $\pi N$ scattering data. In Section III, we give the results of our multipole analyses as well as the photo-decay amplitudes for resonances within our energy region. Finally, in Section V, we summarize our results and consider what improvements can be expected in the future.

## II. THE DATABASE

The data compilations of Ukai and Nakamura [3] and an earlier compilation by Menze, Pfeil and Wilcke [4] were the main sources used in constructing our database. In the present study we have attempted to verify all references contained in these earlier compilations (more than 200 papers). As a result, we have corrected some data, photon energies, and systematic
uncertainties according to the publications and/or the authors' suggestions. For example, the threshold $\pi^{0} p$ differential cross sections produced by MAMI at Mainz now consist of 11 angular points (instead of 21), and have an increased normalization factor of 7.5\% [5]. Total cross sections produced by ALS at Saclay were corrected by a factor of 0.94 [6]. We have added some data missed in our previous analyses [1], [7]. Other data were removed when found to be duplicated in our database or according to the authors' suggestions. A small number of points were removed when no reliable source was found.

As in our previous analyses, not all of the available data were used. Data taken before 1960 were not analyzed, nor were those single-angle and single-energy points measured prior to 1970 . Some individual data points were also removed from the analysis in order to resolve database conflicts. Our previous published pion photoproduction scattering analysis [1] (SP93) was based on $4015 \pi^{0} p, 6019 \pi^{+} n, 2312 \pi^{-} p$, and $120 \pi^{0} n$ data. Since then we have added $698 \pi^{0} p$ and $351 \pi^{+} n$ data. Through the checks described above, the total number of $\pi^{-} p$ data actually decreased by 96 .

The new low-energy data have been produced mainly by TRIUMF, for radiative pion capture on protons ( 39 differential and 10 total cross sections [8] and 10 measurements of $\mathrm{P}[9]$ ), and by LEGS at BNL for $\pi^{0} p$ photoproduction (12 differential cross sections and 97 measurements of $\Sigma$ ) [10]. We also have $9 \Sigma$ measurements from LEGS for $\pi^{-} p$ photoproduction [11], and a small number of SAL $\pi^{+} n$ photoproduction data (16 differential and 3 total cross sections) [12], [13].

Medium-energy differential cross section data for $\pi^{+} n$ ( 245 data) [14] and T measurements for $\pi^{+} n(216$ data $)$ and $\pi^{0} p$ ( 52 data) were produced by ELSA at Bonn [15]. We have added 18 missing polarization measurements for $\pi^{0} p$ in the 1 GeV region from Yerevan [16] and $\pi^{0} p(7 \mathrm{P}[17]$ and $14 \Sigma[18],[19]), \pi^{+} n(18 \Sigma, \mathrm{P}$, and T$)[20]$, and $\pi^{-} p(16 \mathrm{~T})[21]$ measurements between 230 and 700 MeV from Kharkov. The distribution of recent (post-1993) data is given in Fig. 1.

Other experimental efforts will soon provide data in the low to intermediate energy region. These include a precise measurement of $\pi^{0} p$ differential cross sections made in a

LEGS experiment. This experiment spanned the $\Delta$ isobar region and was completed at BNL in 1992 [22]. The region between 145 and 200 MeV was covered by MAMI at Mainz in 1991 [23], and the first phase of a measurement from threshold to about 25 MeV has been completed at SAL [24], [25]. A double polarization (beam-target) experiment at PHOENICS below 1150 MeV is planned at Bonn [26]. We also expect that the 1 to 2 GeV region will be extensively studied at CEBAF [27], [28].

## III. MULTIPOLE ANALYSES AND PHOTO-DECAY AMPLITUDES

As in our previous studies [1], [7], we have performed both energy-dependent and singleenergy analyses. The single-energy analyses were done mainly in order to check for structure missing in the energy-dependent form. However, these results were also used in Breit-Wigner fits to extract photo-decay amplitudes, as described below. The methods used to generate these solutions have been discussed previously [1], [7]. In the present analysis, one further degree of freedom was allowed. Some multipoles were given an overall phase $e^{i \Phi}$ where the angle $\Phi$ was proportional to $\left(\operatorname{Im} T_{\pi N}-T_{\pi N}^{2}\right)$. This form satisfies Watson's theorem for elastic $\pi N$ amplitudes $\left(T_{\pi N}\right)$ while exploiting the undetermined phase for inelastic amplitudes.

Our energy-dependent solution (SM95) has a $\chi^{2}$ of 31810 for 13415 data to 2 GeV . The overall $\chi^{2}$ /datum (about 2.4 ) is considerably lower than that found in our previously published [1] analysis to 1.8 GeV . While the number of data has increased by about 1000 points, the $\chi^{2}$ /datum has decreased significantly from the value (3.6) reported for the SP93 energy-dependent solution. This result mainly reflects the database changes discussed in Section II. Our present and previous solutions are compared in Table I.

The very low energy region is complicated by different thresholds for $\pi^{0} p$ and $\pi^{+} n$ production. While we have obtained a reasonable fit to the available differential and total cross sections, the multipole amplitudes should not used in the $\pi^{+} n$ threshold region. We have concentrated on the extraction of resonance parameters, whereas the threshold region requires a detailed study.

The results from our first analysis [1] (SP93) to 1.8 GeV are compared with the present (SM95) energy-dependent and single-energy multipoles in Fig. 2. Significant deviations from SP93 are visible in multipoles connected to the $\pi N \mathrm{~S}_{11}, \mathrm{~S}_{31}$, and $\mathrm{P}_{11}$ partial-waves. Table II compares the energy-dependent and single-energy fits from threshold to 1.8 GeV .

In our most recent analysis [2] of elastic $\pi N$ scattering data, we found evidence for two small structures on the high-energy tails of the $S_{11}(1650)$ and $F_{15}(1680)$ resonances. These structures remain small in the photoproduction reaction as well. In fact, they are too small for a reliable estimate of their photo-decay amplitudes.

A set of $N \gamma$ decay couplings has been extracted from our multipole amplitudes. We have fit these couplings using a background plus Breit-Wigner form, as is described in Ref. [7]. We analyzed both the energy-dependent and single-energy solutions over a variety of energy ranges in order to estimate uncertainties. Our results are listed in Table III. Here the resonance mass $\left(W_{R}\right)$ and width $(\Gamma)$ values were obtained from fits to our multipole amplitudes. The values of $W_{R}$ remained quite consistent with estimates from our elastic $\pi N$ analysis. The results for $\Gamma$ tended to show more variation. Values of $\Gamma_{\pi} / \Gamma$, where $\Gamma_{\pi}$ is the decay width to $\pi N$ final states, were taken from the elastic $\pi N$ analysis and were not varied. This ratio is required in calculating the photo-decay amplitudes.

As expected, there was little change in the photo-decay amplitudes for resonances strongly coupled to $\pi N$ final states. These include the $P_{33}(1232), D_{13}(1520), S_{11}(1650)$, $F_{15}(1680)$, and $F_{37}(1950)$. The $D_{15}(1675)$ and $D_{33}(1700)$, have also remained stable. The most significant changes were found in the $S_{11}(1535)$ and $P_{11}(1440) A_{1 / 2} \gamma n$ couplings. As these resonances reflect complicated structures in the complex plane, uncertainty in the $\gamma n$ coupling is not surprising. We should also note that the $S_{11}(1535) \gamma p A_{1 / 2}$ coupling remains considerably below the value extracted from a recent analyses [29] of eta photoproduction data. A detailed analysis of both pion and eta photoproduction data in this region would be useful. A listing of our resonance couplings is given in Table III.

## IV. SUM RULES

The development of Chiral Perturbation theory (ChPT) and extended current algebra has led to a renewed interest in a number of sum rules derived in the 1960's. Examples include the Gerasimov-Drell-Hearn [34] (GDH) and Weinberg [35] sum rules, as well as sum rules for the nucleon electric, magnetic, and spin-dependent polarizabilities [36]. Here we will briefly consider the status of two sum rules which require input from photoproduction amplitudes. These are the GDH sum rule and a sum rule [37], due to Fubini, Furlan and Rossetti (FFR), which has not attracted as much attention.

While the GDH sum rule was first derived from a dispersion relation (unsubtracted) and the low-energy theorem (LET) for Compton scattering, it was later obtained from the commutation relations of vector current densities. In Ref. [38], the extended current algebra of Chang and Liang [39] was found to imply a modified GDH sum rule. (It was observed [40] that modified currents would lead to modified sum rules soon after the original GDH sum rule appeared.) An estimation of this modification was shown to account for the apparent discrepancy [41] in the original sum rule.

In their discussion of modified sum rules, the authors of Ref. [40] mentioned in passing that a similar procedure could be used to determine modifications to the FFR sum rule. This sum rule relates nucleon magnetic moments to an integral over the invariant amplitude $\left(A_{1}\right)$ for single-pion photoproduction. The FFR sum rule has the form [42]

$$
\begin{equation*}
g_{A}\left(\frac{e \kappa^{V, S}}{2 M}\right)=\frac{2 f_{\pi}}{\pi} \int \operatorname{Im} A_{1}^{(+, 0)}(\nu) \frac{d \nu}{\nu} \tag{1}
\end{equation*}
$$

where $\kappa^{V, S}$ is the isovector (isoscalar) anomalous magnetic moment of the nucleon, given by $\left(\kappa_{p} \mp \kappa_{n}\right) / 2$. The invariant amplitude $A_{1}$ corresponds to the amplitude associated with $\gamma_{5} \gamma \cdot \epsilon \gamma \cdot k$ in the paper of Chew, Goldberger, Low, and Nambu [43]. The required isospin combinations are given [43], in terms of charge-channel information, by

$$
\begin{equation*}
A_{1}^{(+, 0)}=\left(A_{1}\left(\gamma p \rightarrow \pi^{0} p\right) \pm A_{1}\left(\gamma n \rightarrow \pi^{0} n\right)\right) / 2 . \tag{2}
\end{equation*}
$$

Here the amplitude for photoproduction of $\pi^{0} n$ states is inferred from measurements in the three other charge channels.

Empirical evaluation of the integral in Eq.(1) is (in principle) much simpler than the integral in the GDH sum rule - which involves contributions from multi-pion final states. Unfortunately, there are two problems which make a precise check of the FFR sum rule more difficult. Unlike the GDH sum rule, the FFR sum rule is not exact. It requires use of the Goldberger-Treiman relation [44]. In addition, convergence of the associated integral is expected to be less rapid than was found in the GDH sum rule.

Regardless of the above qualifications, early attempts to evaluate the integral in Eq.(1) were encouraging. An analysis [37] using the $P_{33}(1232)$ and $D_{13}(1520)$ resonances found good agreement for both $\kappa^{V}$ and $\kappa^{S}$. A subsequent study [45], using an early multipole analysis [46], found $85 \%$ of the prediction for $\kappa^{V}$ but did not present results for the isoscalar combination. In Ref. [45] the threshold behavior of the multipoles was modified by a factor to account for a non-zero pion mass [47].

This brings us to the reason for re-examining the FFR sum rule. If the FFR sum rule is valid, as the early studies suggest, it puts a constraint on the contribution to the GDH sum rule coming from single-pion photoproduction alone. Other tests of the GDH integral (including the $\pi \pi N$ contributions) have been made recently by Sandorfi et al. [36]. In reference [36], the multipole input to the GDH and spin-dependent polarizability sum rules was compared to predictions from ChPT [48]. The integrals in these sum rules involve the difference of helicity $3 / 2$ and $1 / 2$ total cross sections weighted by different powers of the photon energy. The difference of proton and neutron spin-dependent polarizabilities was found to agree with ChPT while the difference of proton and neutron GDH sum rules is known to have a problem [41]. The qualitative behavior found in Refs. [36], [41] is preserved in the present analysis. The isovector-isovector component of the GDH sum rule receives a single-pion production contribution very near the old estimate of Karliner [41] while the isovector-isoscalar (VS) component retains its sign and magnitude discrepancy.

While such comparisons are interesting, our poor knowledge of the $\pi \pi N$ contribution is
an impediment. Early estimates of the $\pi \pi N$ contributions were based upon the resonance spectrum found in analyses of $\pi N$ elastic scattering data. This neglects contributions from possible "missing states" which couple very weakly to the $\pi N$ channel. (Though the FFR sum rule is not exact, we at least understand the approximation (PCAC) we are making.)

The integral giving $\kappa^{V}$ is heavily dominated by the $P_{33}(1232)$ contribution, while the integral corresponding to $\kappa^{S}$ appears to have important contributions from a wider range of energies. The result for $\kappa^{V}$ was found to vary between 1.8 and 2.0 , remarkably close to the predicted value. The integral corresponding to $\kappa^{S}$, however, shows considerable sensitivity to uncertainties in the high energy region. Here we find only qualitative agreement (correct sign and order of magnitude). The energy dependence of the isovector FFR integrand is displayed in Fig. 3.

In summary, we find the FFR sum rule for $\kappa^{V}$ to be well satisfied, as was the case for isovector GDH sum rule. We also see that the FFR integral does not converge as quickly as the analogous GDH integral. The isoscalar result is less certain. The existence of significant structure apart from the $D_{13}$ resonance suggests that early success [37] with the isoscalar FFR component was fortuitous. However, we should note that the isoscalar component of the FFR sum rule appears to have less problems than the VS component of the GDH sum rule. This tends to weaken arguments that require a large discrepancy in the single-pion photoproduction multipoles in order to explain the GDH discrepancy. It would be helpful if high-quality photoproduction measurements could be extended a further 1 GeV in order to test the convergence of both the FFR and GDH sum rules.

If extended current algebra does indeed contribute to the FFR sum rule (as suggested in Ref. [40]), the results presented here should provide a useful test for the form proposed by Chang and Liang [39]. While the isoscalar FFR sum rule would likely provide the most sensitive check on any such contribution, the phenomenological evaluation of the associated integral is not yet sufficiently stable for more than an order-of-magnitude test.

## V. SUMMARY AND CONCLUSIONS

We have extensively checked the pion photoproduction database for missing, duplicated, and inconsistent measurements. This has resulted in a significantly reduced $\chi^{2}$. The extracted photo-decay couplings generally remain, for dominant resonances, in good agreement with the older analysis of Crawford and Morton [30]. The $\gamma n A_{1 / 2}$ coupling for the $S_{11}(1535)$ proved difficult to fit. The present value is quite different from the results of both Crawford and Morton [30] and our previous analysis [1] to 1.8 GeV . The uncertainty in this coupling is likely much greater than we previously estimated [1]. As mentioned above, the $\gamma p$ coupling could also have a problem given the discrepancy between the present value and the result of eta photoproduction analyses.

The quark model results of Capstick [32] reproduce most features of the photo-decay couplings. The $P_{33}(1232)$ couplings are underestimated, but this is an old problem. The $P_{11}(1440)$ couplings have the wrong sign and magnitude. There have been suggestions [49] that this state, and also the $P_{33}(1600)$, could be hybrids in which case a comparison with the conventional quark model is inappropriate. It is unfortunate that the weak resonance candidates, found in our analysis of elastic pion-nucleon scattering data, were not clearly evident here. These states should be considered in future analyses of other-meson photoproduction databases.

We briefly examined two sum rules which require photoproduction input. Those components dominated by the $P_{33}(1232)$ resonance seem to be reasonably well satisfied. The isoscalar components of the GDH sum rule and the FFR sum rule for $\kappa^{S}$ are less certain. We are currently exploring the use of fixed-t dispersion relations which may help to constrain our analyses.

The results of these analyses, and the associated databases, are available [50] via either Telnet or the Internet, or from the authors upon request.

## ACKNOWLEDGMENTS

The authors express their gratitude to G. Anton, B. Bassalleck, R. Beck, M. Blecher, H. Dutz, K. G. Fissum, P. Galumian, G. Hakopian, M. Khandaker, M. A. Kovash, E. Mazzucato, D. F. Measday, W. Meyer, A. S. Omelaenko, A. M. Sandorfi, P. V. Sorokin, J. C. Staško, K. Ukai, and H. B. van den Brink for providing experimental data prior to publication or for clarification of information already published. R.W. acknowledges useful discussions regarding sum rules with Lay Nam Chang. I. S. acknowledges the hospitality extended by the Physics Department of Virginia Tech. This work was supported in part by the U. S. Department of Energy Grant DE-FG05-88ER40454 and a NATO Collaborative Research Grant 921155 U .

## REFERENCES

${ }^{\dagger}$ On leave from St. Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg, 188350 Russia.
[1] Z. Li, R. A. Arndt, L. D. Roper, and R. L. Workman, Phys. Rev. C 47, 2759 (1993).
[2] R. A. Arndt, I. I. Strakovsky, R. L. Workman, and M. M. Pavan, to be published in Phys. Rev. C (1995).
[3] K. Ukai and T. Nakamura, Institute for Nuclear Study of University of Tokyo, Japan, Report INS-TEC-22, 1985. We have obtained an updated tape of this compilation from INS, University of Tokyo.
[4] D. Menze, W. Pfeil, and R. Wilcke, Physikalisches Institut der Universität Bonn, Germany, Physics Daten 7-1, 1977.
[5] R. Beck, F. Kalleicher, B. Schoch, J. Vogt, G. Koch, H. Ströher, V. Metag, J. C. McGeorge, J. D. Kellie, and S. J. Hall, Phys. Rev. Lett. 65, 1841 (1990); R. Beck (private communication, 1994).
[6] E. Mazzucato, P. Argan, G. Audit, A. Bloch, N. de Botton, N. d'Hose, J.-L. Faure, M. L. Ghedira, C. Guerra, J. Martin, C. Schuhl, G. Tamas, and E. Vincent, Phys. Rev. Lett. 57, 3144 (1986); E. Mazzucato (private communication, 1994).
[7] R. A. Arndt, R. L. Workman, Z. Li, and L. D. Roper, Phys. Rev. C 42, 1853 (1990); C 42, 1864 (1990).
[8] M. Wang, Ph.D. Thesis, University of Kentucky, 1992; M. A. Kovash (private communication, 1993).
[9] J. C. Staško, B. Bassalleck, E. C. Booth, M. B. Certok, D. Healey, R. Jacot-Guillarmod, M. A. Kovash, D. J. Mack, D. F. Measday, J. P. Miller, M. A. Moinester, D. Ottewell, M. A. Pickar, and P. Weber, Phys. Rev. Lett. 72, 973 (1994).
[10] G. Blanpied, M. Blecher, A. Catacappa, C. Djalali, M.-A. Duval, G. Giordano, S. Hoblit, M. Khandaker, O. C. Kistner, G. Matone, L. Miceli, W. K. Mize, B. M. Preedom, A. M. Sandorfi, C. Schaerf, R. M. Sealock, C. E. Thorn, S. T. Thornton, K. Vaziti, C. S. Whisant, X. Zhao, and M. A. Moinester, Phys. Rev. Lett. 69, 1880 (1992); A. M. Sandorfi (private communication, 1994).
[11] A. M. Sandorfi (private communication, 1995).
[12] K. G. Fissum, H. S. Caplan, E. L. Hallin, D. M. Skopik, J. M. Vogt, M. Frodyma, D. P. Rosenzweig, D. W. Storm, G. V. O'Rielly, and K. R. Garrow, submitted to Phys. Rev. C (1995); K. G. Fissum (private communication, 1994).
[13] H. B. van den Brink, H. P. Blok, H. T. Chung, H. Choi, T. Gresko, E. L. Hallin, W. H. A. Hesselink, T. Kobayashi, J. Mitchell, B. Norum, J. Shaw, D. M. Skopik, P. Stoler, J. M. Vogt, and T. P. Welch, Nucl. Phys. A587, 657 (1995).
[14] K. Büchler, K. H. Althoff, G. Anton, J. Arends, W. Beulertz, M. Breuer, P. Detemple, H. Dutz, E. Kohlgarth, D. Krämer, W. Meyer, G. Nöldeke, W. Schneider, W. Thiel, and B. Zucht, Nucl. Phys. A570, 580 (1994).
[15] K.-H. Althoff, G. Anton, J. Arends, W. Beulertz, A. Bock, M. Breuer, P. Detemple, H. Dutz, R. Gehring, M. Gemander, S. Goertz, K. Heibing, J. Hey, D. Krämer, W. Meyer, G. Nöldeke, G. Reicherz, A. Thomas, and B. Zucht, in: "Few-Body Problems in Physics, Williamsburg, Virginia, USA, May 1994", ed. F. Gross, AIP Conf. Proc. 334, 505 (1994); submitted to Nucl. Phys. A; G. Anton (private communication, 1994).
[16] R. O. Avakyan, R. A. Asatryan, A. S. Bagdasaryan, Yu. A. Garibyan, K. R. Dallakyan, S. S. Danagulyan, V. S. Eganov, A. P. Karapetyan, I. A. Keropyan, O. S. Kizogyan, G. O. Marukyan, E. M. Matevosyan, A. A. Oganesyan, G. M. Petrosyan, Zh. V. Petrosyan, I. P. Prokhorenko, Zh. S. Saakyan, Yu. Z. Susiakyan, E. M. Skho-
toryan, S. P. Taroyan, and G. M. Elbakyan, Yad. Fiz. 53, 717 (1991) [Phys. At. Nucl. (former Sov. J. Nucl. Phys.) 53, 448 (1991)].
[17] A. S. Bratashevski, A. A. Zybalov, S. P. Karasiov, O. K. Konovalov, A. S. Omelaenko, P. V. Sorokin, Yu. O. Storozhenko, and A. E. Tenishev, Ukrain. Phys. J. 31, 1306 (1986); A. S. Omelaenko (private communication, 1994).
[18] V. G. Gorbenko, Yu. V. Zhebrovsky, L. Ya. Kolesnikov, A. L. Rubashkin, and P. V. Sorokin, in: Voprosu Atomnoi Nauki i Techniki (Proceedings of Atomic Science and Technique) High Energy and Atomic Nucleus Physics, Kharkov, 2, 36 (1977); A. S. Omelaenko (private communication, 1994).
[19] V. G. Gorbenko, Yu. V. Zhebrovsky, L. Ya. Kolesnikov, A. L. Rubashkin, P. V. Sorokin, and V. F. Chechetenko, in: Voprosu Atomnoi Nauki i Techniki (Proceedings of Atomic Science and Technique) High Energy and Atomic Nucleus Physics, Kharkov, 2, 31 (1977); A. S. Omelaenko (private communication, 1994).
[20] V. A. Getman, V. G. Gorbenko, A. Ya. Derkach, Yu. V. Zhebrovsky, I. M. Karnaukhov, L. Ya. Kolesnikov, A. A. Lukhanin, A. S. Omelaenko, A. L. Rubashkin, P. V. Sorokin, E. A. Sporov, and Yu. N. Telegin, Voprosu Atomnoi Nauki i Techniki (Proceedings of Atomic Science and Technique) High Energy and Atomic Nucleus Physics, Kharkov, 8, 3 (1989); A. S. Omelaenko (private communication, 1994).
[21] V. L. Agranovich, A. A. Belyaev, B. G. Getman, A. V. Glamazdin, V. G. Gorbenko, A. P. Dzyubak, I. M. Karnaukhov, A. A. Lukhanin, I. L. Semisalov, P. V. Sorokin, E. A. Sporov, and I. A. Tolmachev, Voprosu Atomnoi Nauki i Techniki (Proceedings of Atomic Science and Technique) High Energy and Atomic Nucleus Physics, Kharkov, 8, 5 (1989); A. S. Omelaenko (private communication, 1994).
[22] A. M. Sandorfi (private communication, 1994).
[23] R. Beck (private communication, 1994).
[24] D. A. Hutcheon (private communication, 1995).
[25] J. Bergstrom (private communication, 1995).
[26] G. Anton (private communication, 1994).
[27] W. J. Briscoe, J. Ficenec, D. Jenkins et al. The photoproduction of pions", CEBAF Proposal, E-94-103, 1994.
[28] R. J. Holt, R. Gilman et al. Measurement of photoproton polarization in the $H(\gamma, \vec{p}) \pi^{0}$ reaction, CEBAF Proposal, E-94-012, 1994.
[29] M. Benmerrouche, N.C. Mukhopadhyay, and J.F. Zhang, Phys. Rev. D 51, 3237 (1995).
[30] R. L. Crawford and W. T. Morton, Nucl. Phys. B211, 1 (1983); Particle Data Group, Phys. Lett. B239, 1 (1990).
[31] I. Arai and H. Fujii, Nucl. Phys. B194, 251 (1982).
[32] S. Capstick, Phys. Rev. D 46, 2864 (1992).
[33] L. Montanet, R. M. Barnet, D. E. Groom, T. G. Trippe, C. G. Wohl, H. Murayama, J. Stone, J. J. Hernandez, F. C. Porter, R. J. Morrison, A. Manohar, M. AnduilarBenitez, C. Caso, R. L. Crawford, M. Roos, N. A. Törnqvist, K. G. Hayes, G. Höhler, S. Kawabata, D. M. Manley, K. Olive, R. E. Shrock, S. Eidelman, R. H. Schindler, A. Gurtu, K. Hikasa, G. Conforto, R. L. Workman, and C. Grab, Review of Particle Properties, Phys. Rev. D 50, 1 (1994).
[34] S.B. Gerasimov, Yad. Fiz. 2, 598 (1965) [Sov. J. Nucl. Phys. 2, 430 (1966)]; S.D. Drell and A.C. Hearn, Phys. Rev. Lett. 16, 908 (1966). For an earlier related work, see L. I. Lapidus and Chou Kuang-chao, JETP 14, 357 (1962).
[35] S. Weinberg, Phys. Rev. Lett. 18, 188 (1967); see also a recent study by J.F. Donoghue and B.R. Holstein, Phys. Rev. D 46, 4076 (1992).
[36] The status of these sum rules is discussed in A.M. Sandorfi, C.S. Whisnant and M. Khandaker, Phys. Rev. D 50, R6681 (1994).
[37] S. Fubini, G. Furlan and C. Rossetti, Nuov. Cim. 40, 1171 (1965); S. Fubini, C. Rossetti and G. Furlan, Nuov. Cim. A 43, 161 (1966).
[38] L.N. Chang, Y. Liang and R.L. Workman, Phys. Lett. B 329, 514 (1994).
[39] L.N. Chang and Y. Liang, Phys. Lett. B 268, 64 (1991); Phys. Rev. D 45, 2121 (1992).
[40] K. Kawarabayashi and M. Suzuki, Phys. Rev. 152, 1383 (1966).
[41] R.L. Workman and R.A. Arndt, Phys. Rev. D 45, 1798 (1992); I. Karliner, Phys. Rev. D 7, 2717 (1973); G.C. Fox and D.Z. Freedman, Phys. Rev. 182, 1628 (1969).
[42] This relation has appeared with different signs for the integral, and additional factors of 2 or $M$ depending upon the definition of $A_{1}$. The sum rule is evaluated at $t=0$, though this is not necessary [see the discussion by V. De Alfaro, S. Fubini, G. Furlan, and C. Rossetti, in their book: Currents in Hadron Physics (North Holland, New York, 1973). Expected convergence properties of the FFR and GDH sum rules are also discussed in this reference.]
[43] G.F. Chew, M.L. Goldberger, F.E. Low, and Y. Nambu, Phys. Rev. 106, 1345 (1957).
[44] M. Goldberger and S. Treiman, Phys. Rev. 110, 1478 (1958).
[45] S.L. Adler and F.J. Gilman, Phys. Rev. 152, 1460 (1966).
[46] Ref. [45] cites a private communication from R.L. Walker. The published version of Walker's analysis appeared later [R.L. Walker, Phys. Rev. 182, 1729 (1969)].
[47] As the extrapolation $m_{\pi} \rightarrow 0$ is not well defined, we have used the physical photoproduction amplitudes.
[48] See V. Bernard, N. Kaiser, J. Kambor, and Ulf-G. Meissner, Nucl. Phys. B388, 315
(1992).
[49] Z. Li, V. Burkert, and Z. Li, Phys. Rev. D 46, 70 (1992).
[50] Those with access to TELNET can run the SAID program with a link to VTINTE.PHYS.VT.EDU (128.173.176.61). The login (password) is: PHYSICS (QUANTUM). The user may view the current database and compare our solutions to those of other groups. A WWW server is also available (http://clsaid.phys.vt.edu ).

## Figure captions

Figure 1. Energy-angle distribution of recent (post-1993) data. (a) $\pi^{0} p$, (b) $\pi^{+} n$, and (c) $\pi^{-} p . \quad \pi^{0} p$ data are [observable (number of data)]: $\mathrm{d} \sigma / \mathrm{d} \Omega(12), \Sigma(111)$, $\mathrm{T}(52), \mathrm{P}(6), \mathrm{O}_{x}(7)$, and $\mathrm{O}_{z}(7) . \pi^{+} n$ data are: $\mathrm{d} \sigma / \mathrm{d} \Omega(261), \sigma^{\text {tot }}(3), \Sigma(6)$, $\mathrm{T}(222)$, and $\mathrm{P}(6) . \pi^{-} p$ data are: $\mathrm{d} \sigma / \mathrm{d} \Omega(39), \sigma^{\text {tot }}(10), \Sigma(9), \mathrm{T}(16)$, and P (10). Total cross sections are plotted at zero degrees.

Figure 2. Partial-wave amplitudes $\left(\mathrm{L}_{2 I, 2 J}\right)$ from 0 to 2 GeV . Solid (dashed) curves give the real (imaginary) parts of amplitudes corresponding to the SM95 solution. The real (imaginary) parts of single-energy solutions are plotted as filled (open) circles. The previous SP93 solution [1] is plotted with long dash-dotted (real part) and short dash-dotted (imaginary part) lines. Plotted are the multipole
 ${ }_{\mathrm{p}} \mathrm{M}_{1+}^{1 / 2},(\mathrm{~h})_{\mathrm{n}} \mathrm{E}_{1+}^{1 / 2},(\mathrm{i})_{\mathrm{n}} \mathrm{M}_{1+}^{1 / 2},(\mathrm{j})_{\mathrm{p}} \mathrm{M}_{1-}^{3 / 2},(\mathrm{k})_{\mathrm{p}} \mathrm{E}_{1+}^{3 / 2},(\mathrm{l})_{\mathrm{p}} \mathrm{M}_{1+}^{3 / 2},(\mathrm{~m})_{\mathrm{p}} \mathrm{E}_{2-}^{1 / 2},(\mathrm{n}){ }_{\mathrm{p}} \mathrm{M}_{2-}^{1 / 2}$, $(\mathrm{o})_{\mathrm{n}} \mathrm{E}_{2-}^{1 / 2},(\mathrm{p})_{\mathrm{n}} \mathrm{M}_{2-}^{1 / 2},(\mathrm{q}) \mathrm{p}_{2-} \mathrm{E}_{2}^{3 / 2},(\mathrm{r})_{\mathrm{p}} \mathrm{E}_{2+}^{3 / 2},(\mathrm{~s})_{\mathrm{p}} \mathrm{E}_{3-}^{1 / 2},(\mathrm{t})_{\mathrm{p}} \mathrm{M}_{3-}^{1 / 2},(\mathrm{u})_{\mathrm{n}} \mathrm{E}_{3-}^{1 / 2},(\mathrm{v})$ ${ }_{n} M_{3-}^{1 / 2},(w){ }_{p} E_{3-}^{3 / 2}$, and $(x)_{p} M_{3+}^{3 / 2}$ in millifermi units. The subscript $p(n)$ denotes a proton (neutron) target.

Figure 3. Integrand for the FFR sum rule giving $\kappa^{V}$.

## TABLES

TABLE I. Comparison of present (SM95) and previous (SP93 and SP89) energy-dependent partial-wave analyses of charged and neutral pion photoproduction data. $N_{p r m}$ is the number parameters varied in the fit.

| Solution | Limit | $\chi^{2} /$ data | $\chi^{2} /$ data | $\chi^{2} /$ data | $\chi^{2} /$ data | $N_{p r m}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $(\mathrm{MeV})$ | $\pi^{0} p$ | $\pi^{+} n$ | $\pi^{-} p$ | $\pi^{0} n$ |  |
| SM95 | 2000 | $13087 / 4711$ | $12284 / 6359$ | $6156 / 2225$ | $282 / 120$ | 135 |
| SP93 [1] | 1800 | $14093 / 4015$ | $22426 / 6019$ | $8280 / 2312$ | $275 / 120$ | 134 |
| SP89 [7] | 1000 | $13073 / 3241$ | $11092 / 3847$ | $4947 / 1728$ | $461 / 120$ | 97 |

TABLE II. Comparison of single-energy (binned) and energy-dependent analyses of pion photoproduction data. $N_{p r m}$ is the number parameters varied in the single-energy fits. $\chi_{E}^{2}$ is due to the energy-dependent fit (SM95) taken over the same energy interval.

| $\mathrm{E}_{l a b}(\mathrm{MeV})$ | Range (MeV) | $N_{p r m}$ | $\chi^{2} /$ data | $\chi_{E}^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| 154 | 150-156 | 6 | 119/50 | 276 |
| 165 | 154-176 | 12 | 217/73 | 416 |
| 185 | 175-195 | 14 | 87/91 | 128 |
| 205 | 194-213 | 14 | 125/98 | 158 |
| 225 | 220-235 | 15 | 202/152 | 371 |
| 245 | 234-256 | 15 | 544/258 | 670 |
| 265 | 254-275 | 15 | 540/311 | 639 |
| 285 | 275-296 | 16 | 778/361 | 1000 |
| 305 | 294-316 | 16 | 722/431 | 866 |
| 325 | 314-336 | 17 | 902/423 | 1075 |
| 345 | $333-356$ | 17 | 721/478 | 902 |
| 365 | 354-376 | 17 | 556/395 | 727 |
| 385 | 374-396 | 17 | 443/361 | 578 |
| 405 | 393-416 | 18 | 633/381 | 729 |
| 425 | 414-436 | 18 | 440/311 | 606 |
| 445 | $433-456$ | 18 | 409/280 | 494 |
| 465 | 454-476 | 18 | 271/227 | 344 |
| 485 | 474-496 | 18 | 255/189 | 391 |
| 505 | 494-516 | 19 | 449/257 | 593 |
| 525 | $514-536$ | 19 | 202/177 | 257 |
| 545 | $533-556$ | 19 | 221/222 | 321 |
| 565 | 554-576 | 19 | 342/190 | 643 |
| 585 | $573-596$ | 19 | $372 / 250$ | 480 |


| 605 | $594-616$ | 19 | $313 / 257$ | 374 |
| :---: | :---: | :---: | :---: | :---: |
| 625 | $614-636$ | 19 | 345/271 | 399 |
| 645 | $634-656$ | 20 | 480/315 | 577 |
| 665 | $654-676$ | 20 | 385/272 | 453 |
| 685 | 673-696 | 20 | 407/249 | 460 |
| 705 | 694-716 | 21 | 983/468 | 1139 |
| 725 | $714-736$ | 21 | 290/221 | 468 |
| 745 | $733-756$ | 21 | 766/409 | 1005 |
| 765 | $753-776$ | 22 | 420/245 | 678 |
| 785 | $774-796$ | 22 | 223/213 | 421 |
| 805 | $793-816$ | 20 | 543/344 | 797 |
| 825 | $814-836$ | 23 | 252/176 | 337 |
| 845 | $834-856$ | 23 | 523/325 | 735 |
| 865 | $854-876$ | 23 | 212/144 | 357 |
| 885 | $873-896$ | 23 | 282/155 | 453 |
| 905 | $893-916$ | 24 | 719/329 | 931 |
| 925 | $913-936$ | 25 | 174/145 | 320 |
| 945 | $934-956$ | 25 | 459/252 | 629 |
| 965 | $954-975$ | 25 | 230/126 | 374 |
| 985 | $974-996$ | 25 | 140/124 | 334 |
| 1005 | 994-1016 | 25 | 763/283 | 1051 |
| 1025 | 1014-1036 | 25 | 251/128 | 406 |
| 1045 | 1034-1056 | 25 | 394/195 | 622 |
| 1065 | 1054-1076 | 25 | 131/123 | 299 |
| 1085 | 1074-1096 | 25 | 92/97 | 286 |
| 1105 | 1094-1115 | 25 | $524 / 217$ | 801 |
| 1125 | 1115-1136 | 25 | 140/98 | 283 |


| 1145 | 1134-1155 | 25 | 233/159 | 314 |
| :---: | :---: | :---: | :---: | :---: |
| 1165 | 1154-1176 | 25 | 127/97 | 199 |
| 1185 | 1174-1194 | 25 | 90/82 | 148 |
| 1205 | 1194-1216 | 25 | 276/174 | 433 |
| 1225 | 1214-1236 | 25 | 69/80 | 167 |
| 1245 | 1234-1255 | 25 | 168/104 | 249 |
| 1265 | 1254-1276 | 16 | 68/62 | 102 |
| 1285 | 1275-1296 | 16 | $31 / 40$ | 84 |
| 1305 | 1294-1315 | 16 | 326/128 | 454 |
| 1325 | 1314-1335 | 16 | 52/45 | 129 |
| 1345 | 1335-1355 | 26 | 137/90 | 210 |
| 1365 | 1355-1375 | 16 | 37/36 | 92 |
| 1385 | 1375-1395 | 16 | 78/42 | 167 |
| 1405 | 1395-1416 | 26 | 496/136 | 669 |
| 1425 | 1415-1436 | 16 | 66/53 | 105 |
| 1445 | 1435-1456 | 26 | 104/78 | 148 |
| 1465 | 1455-1475 | 16 | 37/15 | 64 |
| 1485 | 1474-1495 | 16 | $63 / 32$ | 121 |
| 1505 | 1494-1515 | 26 | 226/107 | 432 |
| 1525 | 1515-1535 | 16 | 69/33 | 148 |
| 1545 | 1535-1555 | 26 | 85/55 | 132 |
| 1565 | 1555-1575 | 16 | 18/17 | 39 |
| 1585 | 1575-1595 | 16 | 35/30 | 51 |
| 1605 | 1595-1616 | 26 | 122/92 | 217 |
| 1625 | 1614-1635 | 16 | 48/23 | 75 |
| 1645 | 1635-1655 | 16 | 199/79 | 243 |
| 1665 | 1655-1675 | 16 | 29/35 | 48 |


| 1685 | $1675-1695$ | 16 | $20 / 28$ | 37 |
| :--- | :---: | :---: | :---: | :---: |
| 1705 | $1694-1715$ | 26 | $206 / 92$ | 275 |
| 1725 | $1715-1735$ | 16 | $9 / 14$ | 18 |
| 1745 | $1735-1755$ | 16 | $172 / 46$ | 213 |
| 1765 | $1754-1775$ | 16 | $49 / 34$ | 65 |
| 1785 | $1775-1796$ | 16 | $20 / 19$ | 34 |
| 1805 | $1795-1815$ | 16 | $224 / 75$ | 308 |

Table III. Resonance couplings from a Breit-Wigner fit to the SM95 solution [VPI], the analysis of Crawford and Morton [CM83] [30], Arai and Fujii [AF82] [31], recent quark model [32] predictions [CAP92], and an average from the Particle Data Group [PDG] [33]. A $\dagger$ indicates the quantity was not fitted.

| Resonance State | Reference | $\gamma p(\mathrm{GeV})^{-1 / 2} * 10^{-3}$ |  | $\gamma n(\mathrm{GeV})^{-1 / 2} * 10^{-3}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $A_{1 / 2}$ | $A_{3 / 2}$ | $A_{1 / 2}$ | $A_{3 / 2}$ |
| $\mathrm{S}_{11}(\mathbf{1 5 3 5})$ | VPI | $60 \pm 15$ |  | $-20 \pm 35$ |  |
| $W_{R}=1525(10) \mathrm{MeV}$ | CM83 | $65 \pm 16$ |  | $-98 \pm 26$ |  |
| $\Gamma_{\pi} / \Gamma=0.31$ | AF82 | $80 \pm 7$ |  | $-75 \pm 8$ |  |
| $\Gamma=103(5) \mathrm{MeV}$ | PDG | $68 \pm 10$ |  | $-59 \pm 22$ |  |
|  | CAP92 | 76 |  | -63 |  |
| $\mathrm{S}_{11}(1650)$ | VPI | $69 \pm 5$ |  | $-15 \pm 5$ |  |
| $W_{R}=1677(8) \mathrm{MeV}$ | CM83 | $33 \pm 15$ |  | $-68 \pm 40$ |  |
| $\Gamma_{\pi} / \Gamma \approx 1$ | AF82 | $61 \pm 5$ |  | $8 \pm 19$ |  |
| $\Gamma=160(12) \mathrm{MeV}$ | PDG | $52 \pm 17$ |  | $-11 \pm 28$ |  |
|  | CAP92 | 54 |  | -35 |  |
| $\mathrm{P}_{11}(\mathbf{1 4 4 0})$ | VPI | $-63 \pm 5$ |  | $45 \pm 15$ |  |
| $W_{R}=1463(7) \mathrm{MeV}$ | CM83 | $-69 \pm 18$ |  | $56 \pm 15$ |  |
| $\Gamma_{\pi} / \Gamma=0.68$ | AF82 | $-66 \pm 4$ |  | $19 \pm 12$ |  |
| $\Gamma=360(20) M e V$ | PDG | $-72 \pm 9$ |  | $52 \pm 25$ |  |
|  | CAP92 | 4 |  | -6 |  |
| $\mathrm{P}_{11}(\mathbf{1 7 1 0})$ | VPI | $7 \pm 15$ |  | $-2 \pm 15$ |  |
| $W_{R}=1720(10) \mathrm{MeV}$ | CM83 | $6 \pm 18$ |  | $-17 \pm 20$ |  |
| $\Gamma_{\pi} / \Gamma=0.15$ | AF82 | $-12 \pm 5$ |  | $11 \pm 21$ |  |


| $\Gamma=105(10) M e V$ | PDG | $-6 \pm 27$ | $16 \pm 29$ |
| :---: | :---: | :---: | :---: |
| CAP92 | 13 | -11 |  |


| $\mathbf{P}_{\mathbf{1 3}}(\mathbf{1 7 2 0})$ | VPI | $-15 \pm 15$ | $7 \pm 10$ | $7 \pm 15$ | $-5 \pm 25$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $W_{R}=1713(10) M e V$ | CM83 | $44 \pm 66$ | $-24 \pm 36$ | $-3 \pm 34$ | $18 \pm 28$ |
| $\Gamma_{\pi} / \Gamma=0.16$ | AF82 | $71 \pm 10$ | $-11 \pm 11$ | $1 \pm 38$ | $-134 \pm 44$ |
| $\Gamma=153(15) \mathrm{MeV}$ | PDG | $27 \pm 24$ | $-26 \pm 10$ | $18 \pm 29$ | $-33 \pm 59$ |
|  | CAP92 | -11 | -31 | 4 | 11 |

$\mathbf{D}_{\mathbf{1 3}}(\mathbf{1 5 2 0})$
$W_{R}=1516(10) M e V$
$\Gamma_{\pi} / \Gamma=0.61$
$\Gamma=106(4) \mathrm{MeV}$

| VPI | $-20 \pm 7$ | $167 \pm 5$ | $-48 \pm 8$ | $-140 \pm 10$ |
| :---: | :---: | :---: | :---: | :---: |
| CM83 | $-28 \pm 14$ | $156 \pm 22$ | $-56 \pm 11$ | $-144 \pm 15$ |
| AF82 | $-32 \pm 5$ | $162 \pm 3$ | $-71 \pm 11$ | $-148 \pm 9$ |
| PDG | $-22 \pm 18$ | $163 \pm 7$ | $-62 \pm 6$ | $-137 \pm 13$ |
| CAP92 | -15 | 134 | -38 | -114 |


| $\mathbf{D}_{\mathbf{1 5}}(\mathbf{1 6 7 5})$ | VPI | $15 \pm 10$ | $10 \pm 7$ | $-49 \pm 10$ | $-51 \pm 10$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $W_{R}=1673(5) \mathrm{MeV}$ | CM83 | $21 \pm 11$ | $15 \pm 9$ | $-59 \pm 15$ | $-59 \pm 20$ |
| $\Gamma_{\pi} / \Gamma=0.38$ | AF82 | $6 \pm 5$ | $29 \pm 4$ | $-25 \pm 27$ | $-71 \pm 26$ |
| $\Gamma=154(7) \mathrm{MeV}$ | PDG | $18 \pm 10$ | $18 \pm 9$ | $-50 \pm 14$ | $-70 \pm 6$ |
| $\mathbf{F}_{\mathbf{1 5}}(\mathbf{1 6 8 0})$ | CAP92 | 2 | 3 | -35 | -51 |
| $W_{R}=1679(5) \mathrm{MeV}$ | VPI | $-10 \pm 4$ | $145 \pm 5$ | $30 \pm 5$ | $-40 \pm 15$ |
| $\Gamma_{\pi} / \Gamma=0.68$ | CM83 | $-17 \pm 18$ | $132 \pm 10$ | $44 \pm 12$ | $-33 \pm 15$ |
| $\Gamma=124(4) \mathrm{MeV}$ | AF82 | $-28 \pm 3$ | $115 \pm 12$ | $26 \pm 5$ | $-24 \pm 9$ |
|  | PDG | $-14 \pm 8$ | $135 \pm 17$ | $27 \pm 10$ | $-35 \pm 11$ |


| $\mathrm{S}_{31}(\mathbf{1 6 2 0 )}$ | VPI | $35 \pm 20$ |  |
| :---: | :---: | :---: | :---: |
| $W_{R}=1672(5) M e V$ | CM83 | $35 \pm 10$ |  |
| $\Gamma_{\pi} / \Gamma=0.29$ | AF82 | $-26 \pm 8$ |  |
| $\Gamma=147(8) \mathrm{MeV}$ | PDG | $30 \pm 14$ |  |
|  | CAP92 | 81 |  |
| $\mathrm{P}_{31}(\mathbf{1 9 1 0})$ | VPI | $-2 \pm 8$ |  |
| $W_{R}=1910^{\dagger} \mathrm{MeV}$ | CM83 | $14 \pm 30$ |  |
| $\Gamma_{\pi} / \Gamma=0.26$ | AF82 | $-31 \pm 4$ |  |
| $\Gamma=250^{\dagger} \mathrm{MeV}$ | PDG | $13 \pm 22$ |  |
|  | CAP92 | -8 |  |
| $\mathrm{P}_{33}(1232)$ | VPI | $-141 \pm 5$ | $-261 \pm 5$ |
| $W_{R}=1232.5(0.5) \mathrm{MeV}$ | CM83 | $-145 \pm 15$ | $-263 \pm 26$ |
| $\Gamma_{\pi} / \Gamma=0.99$ | AF82 | $-147 \pm 1$ | $-264 \pm 2$ |
| $\Gamma=117(2) \mathrm{MeV}$ | PDG | $-141 \pm 5$ | $-257 \pm 8$ |
|  | CAP92 | -108 | -186 |
| $\mathrm{P}_{33}(\mathbf{1 6 0 0})$ | VPI | $-18 \pm 15$ | $-25 \pm 15$ |
| $W_{R}=1672(15) \mathrm{MeV}$ | CM83 | $-39 \pm 30$ | $-13 \pm 14$ |
| $\Gamma_{\pi} / \Gamma=0.17$ | AF82 | - | - |
| $\Gamma=315(20) \mathrm{MeV}$ | PDG | $-26 \pm 20$ | $-6 \pm 17$ |
|  | CAP92 | 30 | 51 |
| $\mathrm{D}_{33}(\mathbf{1 7 0 0})$ | VPI | $90 \pm 25$ | $97 \pm 20$ |
| $W_{R}=1690(15) \mathrm{MeV}$ | CM83 | $111 \pm 17$ | $107 \pm 15$ |
| $\Gamma_{\pi} / \Gamma=0.16$ | AF82 | $112 \pm 6$ | $47 \pm 7$ |


| $\Gamma=285(20) \mathrm{MeV}$ | PDG | $114 \pm 13$ | $91 \pm 29$ |
| :---: | :---: | :---: | :---: |
|  | CAP92 | 82 | 68 |


| $\mathbf{D}_{\mathbf{3 5}}(\mathbf{1 9 3 0})$ | VPI | $-7 \pm 10$ | $5 \pm 10$ |
| :---: | :---: | :---: | :---: |
| $W_{R}=1955(15) \mathrm{MeV}$ | CM83 | $-38 \pm 47$ | $-23 \pm 80$ |
| $\Gamma_{\pi} / \Gamma=0.11$ | AF82 | - | - |
| $\Gamma=350(20) \mathrm{MeV}$ | PDG | $-15 \pm 17$ | $-10 \pm 22$ |
|  | CAP92 | - | - |
| $\mathbf{F}_{\mathbf{3 5}}(\mathbf{1 9 0 5})$ |  |  |  |
| $W_{R}=1895(8) \mathrm{MeV}$ | VPI | $22 \pm 5$ | $-45 \pm 5$ |
| $\Gamma_{\pi} / \Gamma=0.12$ | CM83 | $21 \pm 10$ | $-56 \pm 28$ |
| $\Gamma=354(10) \mathrm{MeV}$ | AF82 | $31 \pm 9$ | $-45 \pm 6$ |
|  | PDG | $37 \pm 16$ | $-31 \pm 30$ |
| $\mathbf{F}_{\mathbf{3 7}}(\mathbf{1 9 5 0})$ | CAP92 | 26 | -1 |
| $W_{R}=1947(9) \mathrm{MeV}$ | CM83 | $-67 \pm 14$ | $-82 \pm 17$ |
| $\Gamma_{\pi} / \Gamma=0.49$ | AF82 | $-83 \pm 5$ | $-100 \pm 5$ |
| $\Gamma=302(9) \mathrm{MeV}$ | PDG | $-85 \pm 17$ | $-101 \pm 14$ |
|  | CAP92 | -33 | -42 |

