23 research outputs found

    Glycogen Synthase Kinase 3 (GSK3) Inhibitor, SB-216763, Promotes Pluripotency in Mouse Embryonic Stem Cells

    Get PDF
    Canonical Wnt/β-catenin signaling has been suggested to promote self-renewal of pluripotent mouse and human embryonic stem cells. Here, we show that SB-216763, a glycogen synthase kinase-3 (GSK3) inhibitor, can maintain mouse embryonic stem cells (mESCs) in a pluripotent state in the absence of exogenous leukemia inhibitory factor (LIF) when cultured on mouse embryonic fibroblasts (MEFs). MESCs maintained with SB-216763 for one month were morphologically indistinguishable from LIF-treated mESCs and expressed pluripotent-specific genes Oct4, Sox2, and Nanog. Furthermore, Nanog immunostaining was more homogenous in SB-216763-treated colonies compared to LIF. Embryoid bodies (EBs) prepared from these mESCs expressed early-stage markers for all three germ layers, and could efficiently differentiate into cardiac-like cells and MAP2-immunoreactive neurons. To our knowledge, SB-216763 is the first GSK3 inhibitor that can promote self-renewal of mESC co-cultured with MEFs for more than two months

    Bone Morphogenic Protein signalling suppresses differentiation of pluripotent cells by maintaining expression of E-Cadherin

    Get PDF
    Bone morphogenic protein (BMP) signalling contributes towards maintenance of pluripotency and favours mesodermal over neural fates upon differentiation, but the mechanisms by which BMP controls differentiation are not well understood. We report that BMP regulates differentiation by blocking downregulation of Cdh1, an event that accompanies the earliest stages of neural and mesodermal differentiation. We find that loss of Cdh1 is a limiting requirement for differentiation of pluripotent cells, and that experimental suppression of Cdh1 activity rescues the BMP-imposed block to differentiation. We further show that BMP acts prior to and independently of Cdh1 to prime pluripotent cells for mesoderm differentiation, thus helping to reinforce the block to neural differentiation. We conclude that differentiation depends not only on exposure to appropriate extrinsic cues but also on morphogenetic events that control receptivity to those differentiation cues, and we explain how a key pluripotency signal, BMP, feeds into this control mechanism. DOI: http://dx.doi.org/10.7554/eLife.01197.00

    Role of the bone morphogenic protein pathway in developmental haemopoiesis and leukaemogenesis

    Get PDF
    Myeloid leukaemias share the common characteristics of being stem cell-derived clonal diseases, characterised by excessive proliferation of one or more myeloid lineage. Chronic myeloid leukaemia (CML) arises from a genetic alteration in a normal haemopoietic stem cell (HSC) giving rise to a leukaemic stem cell (LSC) within the bone marrow (BM) ‘niche’. CML is characterised by the presence of the oncogenic tyrosine kinase fusion protein breakpoint cluster region-abelson murine leukaemia viral oncogene homolog 1 (BCR-ABL), which is responsible for driving the disease through activation of downstream signal transduction pathways. Recent evidence from our group and others indicates that important regulatory networks involved in establishing primitive and definitive haemopoiesis during development are reactivated in myeloid leukaemia, giving rise to an LSC population with altered self-renewal and differentiation properties. In this review, we explore the role the bone morphogenic protein (BMP) signalling plays in stem cell pluripotency, developmental haemopoiesis, HSC maintenance and the implication of altered BMP signalling on LSC persistence in the BM niche. Overall, we emphasise how the BMP and Wnt pathways converge to alter the Cdx–Hox axis and the implications of this in the pathogenesis of myeloid malignancies
    corecore