385 research outputs found
Dyad function-based cognitive behavioural therapy as a treatment for obsessive compulsive disorder in two school aged children with high functioning autism
Children with High-Functioning Autism (HF A) are more vulnerable to
developing Obsessive Compulsive Disorder (OCD) than typically developing
children and those with Low-Functioning Autism (Gadow et al., 2005). This
study used a multiple baseline design across behaviours (Cooper, Heron, &
Heward, 2007) to investigate if a two phase function-based Cognitive Behaviour
Therapy (CBT) would decrease obsessive compulsive behaviours (OCBs) in two
children ages 7 and 9 who met criteria for OCD and HF A. This multimodal
treatment package consisted of treatment enhancements to meet the children's
cognitive, linguistic, and social challenges associated with their HF A diagnosis,
as well as a manual and accompanied children's workbook (Vause, Neil, &
Feldman, in progress). In line with previous research conducted on CBT as a
treatment for OCD in this population (e.g., Wood et at, 2009), the children in this
study experienced clinically significant decreases in their OCBs as a result of
receiving the CBT protocol
A good mentor is hard to find: examining the frequency, depth and conditional effects of mentoring relationships in a faculty-in-residence program
Student-faculty interaction is thought to be an important factor in students’ engagement with their post-secondary institution, but the benefit to students usually correlates with the quality of the relationship. Faculty-in-residence programs have been championed as a way to encourage both intentional and casual out-of-the-classroom interactions between students and faculty. McGill University’s Faculty-Mentor-In-Residence program was designed to provide conditions for meaningful connections between students and faculty to take place, but the frequency and depth of interactions had not been evaluated. Using Cox and Orehovec’s (2007) typology of student-faculty interaction to analyze participant responses, this study sought to determine whether the program increased meaningful mentoring relationships, and for whom. Most participants interacted with faculty, but the students who formed the deepest relationships were white and cis-gendered, while students who hold systemically marginalized identities experienced more superficial interactions
Forecasting the combined effects of urbanization and climate change on stream ecosystems: from impacts to management options
Streams collect runoff, heat, and sediment from their watersheds, making them highly vulnerable to anthropogenic disturbances such as urbanization and climate change. Forecasting the effects of these disturbances using process-based models is critical to identifying the form and magnitude of likely impacts. Here, we integrate a new biotic model with four previously developed physical models (downscaled climate projections, stream hydrology, geomorphology, and water temperature) to predict how stream fish growth and reproduction will most probably respond to shifts in climate and urbanization over the next several decades.The biotic submodel couples dynamics in fish populations and habitat suitability to predict fish assemblage composition, based on readily available biotic information (preferences for habitat, temperature, and food, and characteristics of spawning) and day-to-day variability in stream conditions.We illustrate the model using Piedmont headwater streams in the Chesapeake Bay watershed of the USA, projecting ten scenarios: Baseline (low urbanization; no on-going construction; and present-day climate); one Urbanization scenario (higher impervious surface, lower forest cover, significant construction activity); four future climate change scenarios [Hadley CM3 and Parallel Climate Models under medium-high (A2) and medium-low (B2) emissions scenarios]; and the same four climate change scenarios plus Urbanization.Urbanization alone depressed growth or reproduction of 8 of 39 species, while climate change alone depressed 22 to 29 species. Almost every recreationally important species (i.e. trouts, basses, sunfishes) and six of the ten currently most common species were predicted to be significantly stressed. The combined effect of climate change and urbanization on adult growth was sometimes large compared to the effect of either stressor alone. Thus, the model predicts considerable change in fish assemblage composition, including loss of diversity.Synthesis and applications. The interaction of climate change and urban growth may entail significant reconfiguring of headwater streams, including a loss of ecosystem structure and services, which will be more costly than climate change alone. On local scales, stakeholders cannot control climate drivers but they can mitigate stream impacts via careful land use. Therefore, to conserve stream ecosystems, we recommend that proactive measures be taken to insure against species loss or severe population declines. Delays will inevitably exacerbate the impacts of both climate change and urbanization on headwater systems
Abiotic conditions in cephalopod (Sepia officinalis) eggs: embryonic development at low pH and high pCO2
Low pO(2) values have been measured in the perivitelline fluids (PVF) of marine animal eggs on several occasions, especially towards the end of development, when embryonic oxygen consumption is at its peak and the egg case acts as a massive barrier to diffusion. Several authors have therefore suggested that oxygen availability is the key factor leading to hatching. However, there have been no measurements of PVF pCO(2) so far. This is surprising, as elevated pCO(2) could also constitute a major abiotic stressor for the developing embryo. As a first attempt to fill this gap in knowledge, we measured pO(2), pCO(2) and pH in the PVF of late cephalopod (Sepia officinalis) eggs. We found linear relationships between embryo wet mass and pO(2), pCO(2) and pH. pO(2) declined from > 12 kPa to less than 5 kPa, while pCO(2) increased from 0.13 to 0.41 kPa. In the absence of active accumulation of bicarbonate in the PVF, pH decreased from 7.7 to 7.2. Our study supports the idea that oxygen becomes limiting in cephalopod eggs towards the end of development; however, pCO(2) and pH shift to levels that have caused significant physiological disturbances in other marine ectothermic animals. Future research needs to address the physiological adaptations that enable the embryo to cope with the adverse abiotic conditions in their egg environment
Swim-Training Changes the Spatio-Temporal Dynamics of Skeletogenesis in Zebrafish Larvae (Danio rerio)
Fish larvae experience many environmental challenges during development such as variation in water velocity, food availability and predation. The rapid development of structures involved in feeding, respiration and swimming increases the chance of survival. It has been hypothesized that mechanical loading induced by muscle forces plays a role in prioritizing the development of these structures. Mechanical loading by muscle forces has been shown to affect larval and embryonic bone development in vertebrates, but these investigations were limited to the appendicular skeleton. To explore the role of mechanical load during chondrogenesis and osteogenesis of the cranial, axial and appendicular skeleton, we subjected zebrafish larvae to swim-training, which increases physical exercise levels and presumably also mechanical loads, from 5 until 14 days post fertilization. Here we show that an increased swimming activity accelerated growth, chondrogenesis and osteogenesis during larval development in zebrafish. Interestingly, swim-training accelerated both perichondral and intramembranous ossification. Furthermore, swim-training prioritized the formation of cartilage and bone structures in the head and tail region as well as the formation of elements in the anal and dorsal fins. This suggests that an increased swimming activity prioritized the development of structures which play an important role in swimming and thereby increasing the chance of survival in an environment where water velocity increases. Our study is the first to show that already during early zebrafish larval development, skeletal tissue in the cranial, axial and appendicular skeleton is competent to respond to swim-training due to increased water velocities. It demonstrates that changes in water flow conditions can result into significant spatio-temporal changes in skeletogenesis
Genotype-Temperature Interaction in the Regulation of Development, Growth, and Morphometrics in Wild-Type, and Growth-Hormone Transgenic Coho Salmon
The neuroendocrine system is an important modulator of phenotype, directing cellular genetic responses to external cues such as temperature. Behavioural and physiological processes in poikilothermic organisms (e.g. most fishes), are particularly influenced by surrounding temperatures.By comparing the development and growth of two genotypes of coho salmon (wild-type and transgenic with greatly enhanced growth hormone production) at six different temperatures, ranging between 8 degrees and 18 degrees C, we observed a genotype-temperature interaction and possible trend in directed neuroendocrine selection. Differences in growth patterns of the two genotypes were compared by using mathematical models, and morphometric analyses of juvenile salmon were performed to detect differences in body shape. The maximum hatching and alevin survival rates of both genotypes occurred at 12 degrees C. At lower temperatures, eggs containing embryos with enhanced GH production hatched after a shorter incubation period than wild-type eggs, but this difference was not apparent at and above 16 degrees C. GH transgenesis led to lower body weights at the time when the yolk sack was completely absorbed compared to the wild genotype. The growth of juvenile GH-enhanced salmon was to a greater extent stimulated by higher temperatures than the growth of the wild-type. Increased GH production significantly influenced the shape of the salmon growth curves.Growth hormone overexpression by transgenesis is able to stimulate the growth of coho salmon over a wide range of temperatures. Temperature was found to affect growth rate, survival, and body morphology between GH transgenic and wild genotype coho salmon, and differential responses to temperature observed between the genotypes suggests they would experience different selective forces should they ever enter natural ecosystems. Thus, GH transgenic fish would be expected to differentially respond and adapt to shifts in environmental conditions compared with wild type, influencing their ability to survive and interact in ecosystems. Understanding these relationships would assist environmental risk assessments evaluating potential ecological effects
A critical evaluation of the fish early-life stage toxicity test for engineered nanomaterials: experimental modifications and recommendations
There are concerns that regulatory toxicity tests are not fit for purpose for engineered nanomaterials (ENMs) or need modifications. The aim of the current study was to evaluate the OECD 210 fish, early-life stage toxicity test for use with TiO2 ENMs, Ag ENMs, and MWCNT. Both TiO2 ENMS (≤160 mg l(-1)) and MWCNT (≤10 mg l(-1)) showed limited acute toxicity, whilst Ag ENMs were acutely toxic to zebrafish, though less so than AgNO3 (6-day LC50 values of 58.6 and 5.0 µg l(-1), respectively). Evidence of delayed hatching, decreased body length and increased muscle width in the tail was seen in fish exposed to Ag ENMs. Oedema (swollen yolk sacs) was also seen in fish from both Ag treatments with, for example, mean yolk sac volumes of 17, 35 and 39 µm(3) for the control, 100 µg l(-1) Ag ENMs and 5 µg l(-1) AgNO3 treatments, respectively. Among the problems with the standard test guidelines was the inability to maintain the test solutions within ±20 % of nominal concentrations. Pronounced settling of the ENMs in some beakers also made it clear the fish were not being exposed to nominal concentrations. To overcome this, the exposure apparatus was modified with the addition of an exposure chamber that ensured mixing without damaging the delicate embryos/larvae. This allowed more homogeneous ENM exposures, signified by improved measured concentrations in the beakers (up to 85.7 and 88.1 % of the nominal concentrations from 10 mg l(-1) TiO2 and 50 µg l(-1) Ag ENM exposures, respectively) and reduced variance between measurements compared to the original method. The recommendations include: that the test is conducted using exposure chambers, the use of quantitative measurements for assessing hatching and morphometrics, and where there is increased sensitivity of larvae over embryos to conduct a shorter, larvae-only toxicity test with the ENMs
Good parenting may not increase reproductive success under environmental extremes
For species exhibiting parental care, the way in which parents adjust care behaviour to compensate for environmental change potentially influences offspring survival and, ultimately, population viability. Using the three‐spined stickleback (Gasterosteus aculeatus) – a species in which males provide parental care by building and tending a nest and fanning the eggs – we examined how low dissolved oxygen (DO) levels affect paternal care, embryo development and survival. While levels of nest tending were unaffected by DO level, we found that larger males fanned their embryos more under low oxygen conditions. This resulted in faster rates of embryo development within the clutches of these larger males, but reduced embryo survival at 7d post‐fertilisation compared to clutches of smaller males. Our results suggest that although parents may attempt to compensate for environmental change via alterations to care behaviour, their ability to do so can be dependent on parental phenotype. This sets up the potential for oxygen levels to act on the strength and direction of selection within populations. We discuss possible explanations for the surprising result that supposedly adaptive changes in care behaviour by large males (i.e. increased fanning) led to reduced embryo survival at 7d post‐fertilisation, and whether, as a consequence, acute environmental conditions may have the potential to overwhelm selection on sexual traits
- …