295 research outputs found

    Features of case management with neuromuscular disease during COVID-19. Clinical impression

    Get PDF
    The new COVID-19 coronavirus infection, which has become a pandemic, is a very dangerous disease, the clinical picture of which can vary from mild to extremely severe forms of the course. Currently, there are no complete data on the pathogenetic mechanism of SARS-CoV-2, but there are extensive data on the probable risk factors for the development of extremely severe forms of COVID-19. The study of such factors becomes most suitable in terms of preventing their development and influence on the course of the disease in individuals with compromised immune systems and patients with impaired neuromuscular transmission. The article describes two clinical cases of extremely severe COVID-19 in patients with impaired neuromuscular transmission. Based on the analysis of the course of diseases, the conclusions are made about the possible aggravation and mutual activation of the immunopathological process with the launch of the cascade mechanism of the cytokine storm. An assumption has been made about the influence of human leukocyte antigen (HLA) on the severity of COVID-19, which is confirmed by a positive dynamics against the background of administration of IVIG, glucocorticosteroids (GCS), virusinactivated plasma and extracorporeal detoxification methods

    Young stars and brown dwarfs surrounding Alnilam (eps Ori) and Mintaka (del Ori)

    Full text link
    Aims: We look for new regions for the search of substellar objects. Methods: Two circular areas, 45 arcmin-radius each, centred on the young massive star systems Alnilam and Mintaka in the Orion Belt, have been explored. The regions are very young (less than 10 Ma), have low extinction, and are neighbours to sigma Orionis (~3 Ma), a young open cluster very rich in brown dwarfs and planetary-mass objects. We have used Virtual Observatory tools, the astro-photometric Tycho-2, DENIS and 2MASS catalogues, 10 control fields at similar galactic latitudes, and X-ray, mid-infrared and spectroscopic data from the literature. Results: We have compiled exhaustive lists of known young stars and new candidate members in the Ori OB1b association, and of fore- and background sources. A total of 136 stars display features of extreme youth, like early spectral types, lithium in absorption, or mid-infrared flux excess. Other two young brown dwarf and 289 star candidates have been identified from an optical/near-infrared colour-magnitude diagram. We list additional 74 known objects that might belong to the association. This catalogue can serve as an input for characterisation of the stellar and high-mass substellar populations in the Orion Belt. Finally, we have investigated the surface densities and radial distributions of young objects surrounding Alnilam and Mintaka, and compared them with those in the sigma Orionis cluster. We report a new open cluster centred on Mintaka. Conclusions: Both regions can be analogs to the sigma Orionis cluster, but more massive, more extended, slightly older, and less radially concentrated.Comment: Accepted for publication in A&A. It will be published on line in Sect. 14 (Catalogs and data). Tables in Appendix A will soon be available at the CD

    Effect of Chain Structure on the Various Properties of the Copolymers of Fluorinated Norbornenes with Cyclooctene

    No full text
    Fluorinated polymers are attractive due to their special thermal, surface, gas separation, and other properties. In this study, new diblock, multiblock, and random copolymers of cyclooctene with two fluorinated norbornenes, 5-perfluorobutyl-2-norbornene and N-pentafluorophenyl-exo-endo-norbornene-5,6-dicarboximide, are synthesized by ring-opening metathesis copolymerization and macromolecular cross-metathesis in the presence of the first- to third-generation Grubbs’ Ru-catalysts. Their thermal, surface, bulk, and solution characteristics are investigated and compared using differential scanning calorimetry, water contact angle measurements, gas permeation, and light scattering, respectively. It is demonstrated that they are correlated with the chain structure of the copolymers. The properties of multiblock copolymers are generally closer to those of diblock copolymers than of random ones, which can be explained by the presence of long blocks capable of self-organization. In particular, diblock and multiblock fluorine-imide-containing copolymers show a tendency to form micelles in chloroform solutions well below the overlap concentration. The results obtained may be of interest to a wide range of researchers involved in the design of functional copolymers

    Starch-Coated Magnetic Iron Oxide Nanoparticles for Affinity Purification of Recombinant Proteins

    No full text
    Starch-coated magnetic iron oxide nanoparticles have been synthesized by a simple, fast, and cost-effective co-precipitation method with cornstarch as a stabilizing agent. The structural and magnetic characteristics of the synthesized material have been studied by transmission electron microscopy, Mössbauer spectroscopy, and vibrating sample magnetometry. The nature of bonds between ferrihydrite nanoparticles and a starch shell has been examined by Fourier transform infrared spectroscopy. The data on the magnetic response of the prepared composite particles have been obtained by magnetic measurements. The determined magnetic characteristics make the synthesized material a good candidate for use in magnetic separation. Starch-coated magnetic iron oxide nanoparticles have been tested as an affinity sorbent for one-step purification of several recombinant proteins (cardiac troponin I, survivin, and melanoma inhibitory activity protein) bearing the maltose-binding protein as an auxiliary fragment. It has been shown that, due to the highly specific binding of this fragment to the starch shell, the target fusion protein is selectively immobilized on magnetic nanoparticles and eluted with the maltose solution. The excellent efficiency of column-free purification, high binding capacity of the sorbent (100–500 µg of a recombinant protein per milligram of starch-coated magnetic iron oxide nanoparticles), and reusability of the obtained material have been demonstrated

    Olefin-Metathesis-Derived Norbornene–Ethylene–Vinyl Acetate/Vinyl Alcohol Multiblock Copolymers: Impact of the Copolymer Structure on the Gas Permeation Properties

    No full text
    Commercial metathesis polynorbornene is used for the fabrication of high-damping coatings and bulk materials that dissipate vibration and impact energies. Functionalization of this non-polar polymer can improve its adhesive, gas barrier, and other properties, thereby potentially expanding its application area. With this aim, the post-modification of polynorbornene was carried out by inserting ethylene–vinyl acetate–vinyl alcohol blocks into its backbone via the cross-metathesis of polynorbornene with poly(5-acetoxy-1-octenylene) and subsequent deacetylation and hydrogenation of the obtained multiblock copolymers. For the first time, epoxy groups were introduced into the main chains of these copolymers, followed by the oxirane ring opening reaction. The influence of post-modification on the thermal, gas separation, and mechanical properties of the new copolymers was studied. It was shown that the gas permeability of the copolymer significantly depends on its composition, as well as on the amounts of hydroxyl and epoxy groups. The developed methods efficiently improve the barrier properties, reducing the oxygen permeability by 15–33 times in comparison with polynorbornene. The obtained results are promising for various applications and can be extended to a broader family of polydienes and other polymers containing backbone double bonds
    corecore