251 research outputs found
Three-Dimensional Computed Tomography as a Method for Finding Die Attach Voids in Diodes
NASA analyzes electrical, electronic, and electromechanical (EEE) parts used in space vehicles to understand failure modes of these components. The diode is an EEE part critical to NASA missions that can fail due to excessive voiding in the die attach. Metallography, one established method for studying the die attach, is a time-intensive, destructive, and equivocal process whereby mechanical grinding of the diodes is performed to reveal voiding in the die attach. Problems such as die attach pull-out tend to complicate results and can lead to erroneous conclusions. The objective of this study is to determine if three-dimensional computed tomography (3DCT), a nondestructive technique, is a viable alternative to metallography for detecting die attach voiding. The die attach voiding in two- dimensional planes created from 3DCT scans was compared to several physical cross sections of the same diode to determine if the 3DCT scan accurately recreates die attach volumetric variabilit
Monitoring of a methane-seeping pockmark by cabled benthic observatory (Patras Gulf, Greece)
A new seafloor observatory, the gas monitoring
module (GMM), has been developed for continuous and
long-term measurements of methane and hydrogen sulphide
concentrations in seawater, integrated with temperature (T),
pressure (P) and conductivity data at the seafloor. GMM
was deployed in April 2004 within an active gas-bearing
pockmark in the Gulf of Patras (Greece), at a water depth of
42 m. Through a submarine cable linked to an onshore
station, it was possible to remotely check, via direct phone
connection, GMM functioning and to receive data in nearreal
time. Recordings were carried out in two consecutive
campaigns over the periods AprilâJuly 2004, and September
2004âJanuary 2005, amounting to a combined dataset
of ca. 6.5 months. This represents the first long-term
monitoring ever done on gas leakage from pockmarks by
means of CH4+H2S+T+P sensors. The results show
frequent T and P drops associated with gas peaks, more
than 60 events in 6.5 months, likely due to intermittent,
pulsation-like seepage. Decreases in temperature in the
order of 0.1â1°C (up to 1.7°C) below an ambient T of ca.
17°C (annual average) were associated with short-lived
pulses (10â60 min) of increased CH4+H2S concentrations.
This seepage âpulsationâ can either be an active process
driven by pressure build-up in the pockmark sediments, or a
passive fluid release due to hydrostatic pressure drops
induced by bottom currents cascading into the pockmark
depression. Redundancy and comparison of data from
different sensors were fundamental to interpret subtle proxy
signals of temperature and pressure which would not be
understood using only one sensor.Published297-302JCR Journalreserve
Summary Report on Phase I Results from the 3D Printing in Zero G Technology Demonstration Mission, Volume I
Human space exploration to date has been confined to low-Earth orbit and the Moon. The International Space Station (ISS) provides a unique opportunity for researchers to prove out the technologies that will enable humans to safely live and work in space for longer periods of time and venture beyond the Earth/Moon system. The ability to manufacture parts in-space rather than launch them from Earth represents a fundamental shift in the current risk and logistics paradigm for human spaceflight. In September 2014, NASA, in partnership with Made In Space, Inc., launched the 3D Printing in Zero-G technology demonstration mission to explore the potential of additive manufacturing for in-space applications and demonstrate the capability to manufacture parts and tools on orbit using fused deposition modeling. This Technical Publication summarizes the results of testing to date of the ground control and flight prints from the first phase of this ISS payload
Background Light in Potential Sites for the ANTARES Undersea Neutrino Telescope
The ANTARES collaboration has performed a series of {\em in situ}
measurements to study the background light for a planned undersea neutrino
telescope. Such background can be caused by K decays or by biological
activity. We report on measurements at two sites in the Mediterranean Sea at
depths of 2400~m and 2700~m, respectively. Three photomultiplier tubes were
used to measure single counting rates and coincidence rates for pairs of tubes
at various distances. The background rate is seen to consist of three
components: a constant rate due to K decays, a continuum rate that
varies on a time scale of several hours simultaneously over distances up to at
least 40~m, and random bursts a few seconds long that are only correlated in
time over distances of the order of a meter. A trigger requiring coincidences
between nearby photomultiplier tubes should reduce the trigger rate for a
neutrino telescope to a manageable level with only a small loss in efficiency.Comment: 18 pages, 8 figures, accepted for publication in Astroparticle
Physic
The ANTARES Optical Beacon System
ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It
consists of a three dimensional array of photomultiplier tubes that can detect
the Cherenkov light induced by charged particles produced in the interactions
of neutrinos with the surrounding medium. High angular resolution can be
achieved, in particular when a muon is produced, provided that the Cherenkov
photons are detected with sufficient timing precision. Considerations of the
intrinsic time uncertainties stemming from the transit time spread in the
photomultiplier tubes and the mechanism of transmission of light in sea water
lead to the conclusion that a relative time accuracy of the order of 0.5 ns is
desirable. Accordingly, different time calibration systems have been developed
for the ANTARES telescope. In this article, a system based on Optical Beacons,
a set of external and well-controlled pulsed light sources located throughout
the detector, is described. This calibration system takes into account the
optical properties of sea water, which is used as the detection volume of the
ANTARES telescope. The design, tests, construction and first results of the two
types of beacons, LED and laser-based, are presented.Comment: 21 pages, 18 figures, submitted to Nucl. Instr. and Meth. Phys. Res.
The EMSO Generic Instrument Module (EGIM): standardized and interoperable instrumentation for ocean observation
The oceans are a fundamental source for climate balance, sustainability of resources and life on Earth, therefore society has a strong and pressing interest in maintaining and, where possible, restoring the health of the marine ecosystems. Effective, integrated ocean observation is key to suggesting actions to reduce anthropogenic impact from coastal to deep-sea environments and address the main challenges of the 21st century, which are summarized in the UN Sustainable Development Goals and Blue Growth strategies. The European Multidisciplinary Seafloor and water column Observatory (EMSO), is a European Research Infrastructure Consortium (ERIC), with the aim of providing long-term observations via fixed-point ocean observatories in key environmental locations across European seas from the Arctic to the Black Sea. These may be supported by ship-based observations and autonomous systems such as gliders. In this paper, we present the EMSO Generic Instrument Module (EGIM), a deployment ready multi-sensor instrumentation module, designed to measure physical, biogeochemical, biological and ecosystem variables consistently, in a range of marine environments, over long periods of time. Here, we describe the system, features, configuration, operation and data management. We demonstrate, through a series of coastal and oceanic pilot experiments that the EGIM is a valuable standard ocean observation module, which can significantly improve the capacity of existing ocean observatories and provides the basis for new observatories. The diverse examples of use included the monitoring of fish activity response upon oceanographic variability, hydrothermal vent fluids and particle dispersion, passive acoustic monitoring of marine mammals and time series of environmental variation in the water column. With the EGIM available to all the EMSO Regional Facilities, EMSO will be reaching a milestone in standardization and interoperability, marking a key capability advancement in addressing issues of sustainability in resource and habitat management of the oceans.This work was funded by the project EMSODEV (Grant agreement No 676555) supported by DG Research and Innovation of the European Commission under the Research Infrastructures Programme of the H2020. EMSO-link EC project (Grant agreement No 731036) provided additional funding. Other projects which supported the work include Plan Estatal de InvestigaciĂłn CientĂfica y TĂ©cnica y de InnovaciĂłn 2017â2020, project BITER-LANDER PID2020- 114732RB-C32, iFADO (Innovation in the Framework of the Atlantic Deep Ocean, 2017â2021) EAPA_165/2016. The Spanish Government contributed through the âSevero Ochoa Centre Excellenceâ accreditation to ICM-CSIC (CEX2019-000928-S) and the Research Unit Tecnoterra (ICM-CSIC/UPC). UK colleagues were supported by Climate Linked Atlantic Sector Science (CLASS) project supported by NERC National Capability funding (NE/R015953/1).Peer ReviewedArticle signat per 33 autors/es: Nadine LantĂ©ri; Henry A. Ruh; Andrew Gates; Enoc MartĂnez; Joaquin del Rio Fernandez; Jacopo Aguzzi; Mathilde Cannat; Eric Delory; Davide Embriaco; Robert Huber; Marjolaine Matabos;George Petihakis; Kieran Reilly; Jean-François Rolin; Mike van der Schaar; Michel AndrĂ©; JĂ©rĂŽme Blandin; AndrĂ©s Cianca; Marco Francescangeli; Oscar Garcia; Susan Hartman; Jean-Romain Lagadec; Julien Legrand; Paris Pagonis; Jaume Piera; Xabier Remirez; Daniel M. Toma; Giuditta Marinaro; Bertrand Moreau; Raul Santana; Hannah Wright; Juan JosĂ© Dañobeitia; Paolo FavaliPostprint (published version
Single-frame multiparameter platforms for seafloor geophysical and environmental observations: projects and missons from GEOSTAR to ORION
The paper presents an overview of recent seafloor long-term single-frame multiparameter platform developed in the framework of the European Commission and Italian projects starting from the GEOSTAR prototype. The main features of the different systems are described as well as the sea missions that led to their validation. The ORION seafloor observatory network recently developed, based on the GEOSTAR-type platforms and engaged in a deep-sea mission at 3300 m w.d. in the Mediterranean Sea, is also describe
Explicating ways of consensus-making in science and society: distinguishing the academic, the interface and the meta-consensus
In this chapter, we shed new light on the epistemic struggle between establishing consensus and acknowledging plurality, by explicating different ways of consensus-making in science and society and examining the impact hereof on their field of intersection, i.e. consensus conferences (in particular those organized by the National Institute of Health). We draw a distinction between, what we call, academic and interface consensus, to capture the wide appeal to consensus in existing literature. We investigate such accounts - i.e. from Miriam Solomon, John Beatty and Alfred Moore, and Boaz Miller - as to put forth a new understanding of consensus-making, focusing on the meta-consensus. We further defend how (NIH) consensus conferences enable epistemic work, through demands of epistemic adequacy and contestability, contrary to the claim that consensus conferences miss a window for epistemic opportunity (Solomon M, The social epistemology of NIH consensus conferences. In: Kincaid H, McKitrick J (ed) Establishing medical reality: methodological and metaphysical issues in philosophy of medicine. Springer, Dordrecht, 2007). Paying attention to the dynamics surrounding consensus, moreover, allows us to illustrate how the public understanding of science and the public use of the ideal of consensus could be well modified
Reading religion in Norwegian textbooks: are individual religions ideas or people?
Different religions are treated in different ways in Norwegian sixth form textbooks. We carried out an exhaustive content analysis of the chapters devoted to individual religions in textbooks for the Religion and Ethics course currently available in Norway, using rigorous indicators to code each word, image and question according to whether they were treated the religion as a set of ideas or a group of people. After adjusting for trends in the different kinds of data (word, image, question), we found that Buddhism and Christianity receive significantly more attention for their ideas than Hinduism, Islam and Judaism, which are treated more as people. This difference cannot be explained by the national syllabus or the particularities of the individual religions. The asymmetry also has implications for the pupilsâ academic, moral and pedagogical agency for which teachers play a critical role in compensating.acceptedVersio
- âŠ