99 research outputs found

    The Thoracic Morphology of Archostemata and the Relationships of the Extant Suborders of Coleoptera (Hexapoda)

    Get PDF
    Thoracic structures of Tetraphalerus bruchi are described in detail. The results were compared with features found in other representatives of Archostemata and other coleopteran suborders. Differences between thoracic structures of Tetraphalerus and members of other archostematan subgroups are discussed. External and internal characters of larval and adult representatives of 37 genera of the coleopteran suborders are outlined, coded and analysed cladistically, with four groups of Neuropterida as outgroup taxa. The results strongly suggest the branching pattern Archostemata + [Adephaga + (Myxophaga + Polyphaga)]. Coleoptera excluding Archostemata are supported with a high Bremer support. Important evolutionary changes linked with this branching event are simplifications of the thoracic skeleton resulting in reduced degrees of freedom (i.e. a restricted movability, especially at the leg bases), and a distinct simplification of the muscle system. This development culminates in Polyphaga, which are also strongly supported as a clade. Internalization of the partly reduced propleura, further muscle losses, and the fusion of the mesoventrites and metaventrites—with reversal in Scirtoidea and Derodontidae—are autapomorphies of Polyphaga. Archostemata is a small relict group in contrast to highly successful xylobiontic groups of Polyphaga. The less efficient thoracic locomotor apparatus, the lack of cryptonephric Malpighian tubules, and the rise of angiosperms with beetle groups primarily adjusted to them may have contributed to the decline of Archostemata.Organismic and Evolutionary Biolog

    The earliest evidence of Omophroninae (Coleoptera: Carabidae) from mid-Cretaceous Kachin amber and the description of a larva of a new genus

    Get PDF
    Omophroninae is a distinctive monogeneric group of Carabidae, presumably placed relatively close to the root of the megadiverse adephagan family. In the present study we describe a larva belonging to Omophroninae from mid-Cretaceous Burmese amber and erect a new genus †Cretomophron. Several features support the placement in this small but distinctive subfamily, such as the wedge-shaped head, the large triangular nasale, the elevated antennae with the apical segment directed sideways, the large and bidentate mandibular retinaculum, the enlarged hexagonal prothorax, legs with a distinct armature of spines, and the relatively narrow and posteriorly tapering abdomen. In contrast to larvae of the extant genus Omophron Latreille, the posterior tentorial grooves are not shifted backwards, apparently a plesiomorphic feature, the 2nd antennomeres are markedly longer, and the legs bear long setae and rather thin and long spike-like setae. †Cretomophron also differs in the presence of numerous setae arranged in transverse rows on abdominal segment VI. Lateral lobe-like expansions of abdominal tergites are a conspicuous feature of the new genus but similar structures occur in later instars of Omophron. Structural specializations of the head, prothorax and legs strongly suggest that the larvae were burrowing in sand, like adults and larvae of the extant genus, and that they were efficient predators, detecting prey with the unusually shaped antennae and long maxillae, grasping it with the elongate apical mandibular tooth, and squeezing and piercing it between the bidentate retinaculum and large and triangular nasale

    The head anatomy of Protanilla lini (Hymenoptera: Formicidae: Leptanillinae), with a hypothesis of their mandibular movement

    Get PDF
    The hypogaeic ant subfamilies Leptanillinae and Martialinae likely form the sister group to the remainder of the extant Formicidae. In order to increase the knowledge of anatomy and functional morphology of these unusual and phylogenetically crucial ants, we document and describe in detail the cranium of a leptanilline, Protanilla lini Terayama, 2009. The mandibular articulation of the species differs greatly from that of other ants studied so far, and clearly represents a derived condition. We propose a mode of movement for the specialized mandibles that involves variable rotation and sophisticated locking mechanisms. While a wide opening gape and a unique articulation are characteristics of the mandibular movement of P. lini, the observed condition differs from the trap-jaw mechanisms occurring in other groups of ants, and we cannot, at present, confirm such a functional configuration. Protanilla lini displays hardly any plesiomorphies relative to the poneroformicine ants, with the possible exception of the absence of the torular apodeme. Instead, the species is characterized by a suite of apomorphic features related to its hypogaeic and specialized predatory lifestyle. This includes the loss of eyes and optic neuropils, a pronouncedly prognathous head, and the derived mandibular articulation. The present study is an additional stepping-stone on our way to reconstructing the cephalic ground plan of ants and will contribute to our understanding of ant evolution.info:eu-repo/semantics/publishedVersio

    A needle in a haystack: Mesozoic origin of parasitism in Strepsiptera revealed by first definite Cretaceous primary larva (Insecta)

    Get PDF
    Twisted winged insects (Strepsiptera) are a highly specialized small order of parasitic insects. Whether parasitism developed at an early or late stage in the evolution of the group was unknown. Here we record and describe the first definite Mesozoic strepsipteran primary larva embedded in Burmese amber (∼99 million years ago). This extends the origin of parasitism back by at least ∼50 million years, and reveals that this specialized life style has evolved in the Mesozoic or even earlier in the group. The extremely small first instar displays all diagnostic characters of strepsipteran immatures of this stage and is nearly identical with those of Mengenillidae, one of the most “ancestral” extant strepsipteran taxa. This demonstrates a remarkable evolutionary stasis over  100 million years. The new finding strongly weakens the case of small larvae embedded in Cretaceous amber interpreted as strepsipteran immatures. They differ in many structural features from extant strepsipteran primary larvae and are very likely parasitic beetle larvae

    The Beetle Tree of Life Reveals that Coleoptera Survived End-Permium Mass Extinction to Diversify During the Cretaceous Terrestrial Revolution

    Get PDF
    Here we present a phylogeny of beetles (Insecta: Coleoptera) based on DNA sequence data from eight nuclear genes, including six single-copy nuclear protein-coding genes, for 367 species representing 172 of 183 extant families. Our results refine existing knowledge of relationships among major groups of beetles. Strepsiptera was confirmed as sister to Coleoptera and each of the suborders of Coleoptera was recovered as monophyletic. Interrelationships among the suborders, namely Polyphaga (Adephaga (Archostemata, Myxophaga)), in our study differ from previous studies. Adephaga comprised two clades corresponding to Hydradephaga and Geadephaga. The series and superfamilies of Polyphaga were mostly monophyletic. The traditional Cucujoidea were recovered in three distantly related clades. Lymexyloidea was recovered within Tenebrionoidea. Several of the series and superfamilies of Polyphaga received moderate to maximal clade support in most analyses, for example Buprestoidea, Chrysomeloidea, Coccinelloidea, Cucujiformia, Curculionoidea, Dascilloidea, Elateroidea, Histeroidea and Hydrophiloidea. However, many of the relationships within Polyphaga lacked compatible resolution under maximum-likelihood and Bayesian inference, and/or lacked consistently strong nodal support. Overall, we recovered slightly younger estimated divergence times than previous studies for most groups of beetles. The ordinal split between Coleoptera and Strepsiptera was estimated to have occurred in the Early Permian. Crown Coleoptera appeared in the Late Permian, and only one or two lineages survived the end-Permian mass extinction, with stem group representatives of all four suborders appearing by the end of the Triassic. The basal split in Polyphaga was estimated to have occurred in the Triassic, with the stem groups of most series and superfamilies originating during the Triassic or Jurassic. Most extant families of beetles were estimated to have Cretaceous origins. Overall, Coleoptera experienced an increase in diversification rate compared to the rest of Neuropteroidea. Furthermore, 10 family-level clades, all in suborder Polyphaga, were identified as having experienced significant increases in diversification rate. These include most beetle species with phytophagous habits, but also several groups not typically or primarily associated with plants. Most of these groups originated in the Cretaceous, which is also when a majority of the most species-rich beetle families first appeared. An additional 12 clades showed evidence for significant decreases in diversification rate. These clades are species-poor in the Modern fauna, but collectively exhibit diverse trophic habits. The apparent success of beetles, as measured by species numbers, may result from their associations with widespread and diverse substrates – especially plants, but also including fungi, wood and leaf litter – but what facilitated these associations in the first place or has allowed these associations to flourish likely varies within and between lineages. Our results provide a uniquely well-resolved temporal and phylogenetic framework for studying patterns of innovation and diversification in Coleoptera, and a foundation for further sampling and resolution of the beetle tree of life

    The Beetle Tree of Life  Reveals the Order Coleoptera Survived End Permain Mass Extinction to Diversify During the Cretaceous Terrestrial Revolution

    Get PDF
    Here we present a phylogeny of beetles (Insecta: Coleoptera) based on DNA sequence data from eight nuclear genes, including six single-copy nuclear protein-coding genes, for 367 species representing 172 of 183 extant families. Our results refine existing knowledge of relationships among major groups of beetles. Strepsiptera was confirmed as sister to Coleoptera and each of the suborders of Coleoptera was recovered as monophyletic. Interrelationships among the suborders, namely Polyphaga (Adephaga (Archostemata, Myxophaga)), in our study differ from previous studies. Adephaga comprised two clades corresponding to Hydradephaga and Geadephaga. The series and superfamilies of Polyphaga were mostly monophyletic. The traditional Cucujoidea were recovered in three distantly related clades. Lymexyloidea was recovered within Tenebrionoidea. Several of the series and superfamilies of Polyphaga received moderate to maximal clade support in most analyses, for example Buprestoidea, Chrysomeloidea, Coccinelloidea, Cucujiformia, Curculionoidea, Dascilloidea, Elateroidea, Histeroidea and Hydrophiloidea. However, many of the relationships within Polyphaga lacked compatible resolution under maximum-likelihood and Bayesian inference, and/or lacked consistently strong nodal support. Overall, we recovered slightly younger estimated divergence times than previous studies for most groups of beetles. The ordinal split between Coleoptera and Strepsiptera was estimated to have occurred in the Early Permian. Crown Coleoptera appeared in the Late Permian, and only one or two lineages survived the end-Permian mass extinction, with stem group representatives of all four suborders appearing by the end of the Triassic. The basal split in Polyphaga was estimated to have occurred in the Triassic, with the stem groups of most series and superfamilies originating during the Triassic or Jurassic. Most extant families of beetles were estimated to have Cretaceous origins. Overall, Coleoptera experienced an increase in diversification rate compared to the rest of Neuropteroidea. Furthermore, 10 family-level clades, all in suborder Polyphaga, were identified as having experienced significant increases in diversification rate. These include most beetle species with phytophagous habits, but also several groups not typically or primarily associated with plants. Most of these groups originated in the Cretaceous, which is also when a majority of the most species-rich beetle families first appeared. An additional 12 clades showed evidence for significant decreases in diversification rate. These clades are species-poor in the Modern fauna, but collectively exhibit diverse trophic habits. The apparent success of beetles, as measured by species numbers, may result from their associations with widespread and diverse substrates - especially plants, but also including fungi, wood and leaf litter - but what facilitated these associations in the first place or has allowed these associations to flourish likely varies within and between lineages. Our results provide a uniquely well-resolved temporal and phylogenetic framework for studying patterns of innovation and diversification in Coleoptera, and a foundation for further sampling and resolution of the beetle tree of life.Facultad de Ciencias Naturales y Muse

    Comment on the letter of the Society of Vertebrate Paleontology (SVP) dated April 21, 2020 regarding 'Fossils from conflict zones and reproducibility of fossil‑based scientific data': Myanmar amber

    Get PDF
    Recently, the Society of Vertebrate Paleontology (SVP) has sent around a letter, dated 21st April, 2020 to more than 300 palaeontological journals, signed by the President, Vice President and a former President of the society (Rayfield et al. 2020). The signatories of this letter request significant changes to the common practices in palaeontology. With our present, multi-authored comment, we aim to argue why these suggestions will not lead to improvement of both practice and ethics of palaeontological research but, conversely, hamper its further development. Although we disagree with most contents of the SVP letter, we appreciate this initiative to discuss scientific practices and the underlying ethics. Here, we consider different aspects of the suggestions by Rayfield et al. (2020) in which we see weaknesses and dangers. It is our intent to compile views from many different fields of palaeontology, as our discipline is (and should remain) pluralistic. This contribution deals with the aspects concerning Myanmar amber. Reference is made to Haug et al. (2020a) for another comment on aspects concerning amateur palaeontologists/citizen scientists/private collectors
    corecore