This is the peer reviewed version of the following article: Liu S-P, Wipfler B \& Beutel RG (2017) The unique locomotor apparatus of whirligig beetles of the tribe Orectochilini (Gyrinidae, Coleoptera). Journal of Systematic Research and Evolutionary Biology 56(2) 196-208, which has been published in final form at https://doi.org/10.1111/jzs.12195. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

The unique locomotor apparatus of whirligig beetles of the tribe Orectochilini (Gyrinidae,

 Coleoptera)Si-Pei Liu ${ }^{1}$, Benjamin Wipfler ${ }^{1}$ and Rolf G. Beutel ${ }^{1}$
${ }^{1}$ Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität Jena, Jena
Corresponding author: Rolf G. Beutel (rolf.beutel@uni-jena.de)
Contributing authors: Si-Pei Liu (sipei.liu@uni-jena.de), Benjamin Wipfler (benjamin.wipfler@uni-jena.de)

Abstract

Whirligig beetles, which are known for their rapid gliding on the water surface, have evolved a unique locomotor apparatus. External and internal thoracic structures of Orectochilus villosus (Orectochilini) are described in detail and documented with micro-computed tomography, computer based 3D reconstructions, and scanning electronic microscopy (SEM). The results are compared with conditions found in other genera of Gyrinidae and other groups of Coleoptera. The focus is on structures linked with locomotion, especially on the unusual flight apparatus, which differs strongly from that of other beetles. As in other Orectochilini, the prothorax of Orectochilus displays characters typical for Gyrinidae, with triangular procoxae and fore legs transformed into elongated, sexually dimorphic grasping devices. The musculature of this segment is similar to the pattern found in other Coleoptera. Simlar to all other extant Gyrinidae, the mesothorax is characterized by an extensive and flat mesoventrite, suitable for gliding on the water surface. As in Heterogyrinae and the other Gyrininae, the pterothoracic legs are transformed into paddle-like structures, enabling the beetles to move with high speed on the surface film. The musculature of the mesothorax is reduced compared to other Coleoptera, but similar to what is found in the other Gyrininae. The metathoracic skeleton and musculature are simplified in Orectochilini compared to other Gyrininae and other groups of Coleoptera. In O. villosus only 10 metathoracic muscles are preserved. Thirty-six are present in an archostematan beetle, a condition probably close to the coleopteran groundplan. The metathoracic dorsal longitudinal bundles are absent in Gyrininae, muscles that play a role as indirect flight muscles in most other neopteran insects. The rest of the posteromotoric flight apparatus is distinctly modified, with a limited number of skeletomuscular elements taking over more than one function, i.e. leg movements and flight. The large muscle M84 (IIIdvm7) M.

noto-trochanteralis, for instance, functions as dominant wing levator, but is also responsible for the powerful and rapid backstroke of the hind legs. The presence of this muscle is a synapomorphy of Heterogyrinae and Gyrininae. The narrow metafurca in the latter group is likely linked to its large size. The elytra likely contribute to the control of the flight of the beetle, whereas they shield and inhibit the flight apparatus during swimming.

Keywords: Gyrinidae - Orectochilus - thorax - morphology - locomotor apparatus

1. Introduction

Whirligig beetles or Gyrinidae are known for swimming rapidly in circles on the water surface, usually forming groups of several dozens or thousands of individuals (Bott 1928; Omer-Cooper 1934; Larsén 1966). According to Nachtigall (1961) their swimming apparatus is the most efficient in the entire animal kingdom. The habitat with small arthropods caught in the surface film was referred to as a "world of the dead and the dying" (Omer-Cooper 1934). The unusual life habits of whirligig beetles are linked with a series of autapomorphies, including the subdivided compound eyes and the antennae with fringes of setae on the pedicellus registering movements of the water surface (e.g. Larsén 1966). The systematic position of the family within the suborder Adephaga is not fully settled (e.g. McKenna et al. 2015). However, a sistergroup relationship with all other adephagan families appears most likely, supported by morphological characters (Beutel and Roughley 1988; Beutel, et al. 2013) and also by a recent molecular study (Baca et al. 2017).

A comprehensive morphological study on the locomotor organs of Gyrinidae was published by Larsén (1966), together with the thoracic morphology of 54 species in the suborders Adephaga and Polyphaga. However, the work of Larsén (1966) was exclusively based on dissections and focused on the species Gyrinus marinus Gyllenhal, 1808 (Gyrinini). At that time, the gyrinid key taxon Spanglerogyrus albiventris Folkerts, 1979 and the sistergroup of all the remaining genera was unknown. Besides this, no information on the thoracic morphology of the plesiomorphic suborder Archostemata was available (Baehr 1975; Friedrich et al. 2009).

In this study we focus on the tribe Orectochilini, which includes the genera Gyretes, Orectogyrus, Orectochilus and Patrus (formerly a subgenus of Orectochilus; Miller and Bergsten 2012). It is the subgroup with the most advanced features in this family according to phylogenetic analyses of Gyrinidae (Larsén 1966; Beutel 1989a, b, 1990; Miller and Bergsten 2012). It cannot be excluded that some flightless species occur in Orectochilini (Larsén 1954).

However, there are records indicating that members of different genera of this tribe have retained their flight capacity (Larsén 1966; Ochs 1966; Brinck 1982), including the one in the focus of this study, Orectochilus villosus (Müller, 1776). The thoracic morphology of this species is described in detail and documented using μ-CT data, computer based 3D reconstructions and scanning electronic microscopy (SEM). The locomotor organs are discussed from evolutionary and functional perspectives, especially the flight apparatus, which is characterized by a distinctly modified skeleto-muscular apparatus compared to beetles of other families or representatives of other groups of Neoptera (Larsén 1966; Brodsky 1994).

2. Materials and Methods

2.1. Materials

Orectochilus villosus (Müller, 1776), fixed in FAE (formaldehyde-acetic acid-ethanol) and stored in ethanol, collected in the Saale river, 8 Km south of Jena (Thuringia, Germany).
Heterogyrus milloti Legros, 1953 (Heterogyrinae; MilLER \& BERGSTEN 2012), fixed and stored in 97% ethanol; collected at Fianarantsoa, small stream $\sim 8 \mathrm{~km}$ W Ranomofana, Ranomofana NP, Madagascar, $21^{\circ} 14.992^{\prime}$ S $47^{\circ} 24.332^{\prime}$ E, 2 November 2014, Miller, Gustafson and Bergsten.

Additional morphological data were extracted from the literature (Larsén 1954, 1966; Beutel 1989a, b, 1990; Friedrich et al. 2009).

2.2. Synchrotron radiation based micro-computed tomography (SR- $\mu \mathbf{C T}$)

One specimen was dehydrated in an ethanol series and dried at the critical point (EmiTech K850 Critical Point Dryer). It was scanned in a small Eppendorf tube at Beamline BW2 of German Electron Synchrotron Facility (DESY, Hamburg) using a stable low photon energy beam (8 kVP) and absorption contract.

2.3. Computer based 3D-reconstruction

Based on the μ CT-image stack the thoracic segments of O. villosus were reconstructed threedimensionally using FEI Amira 6.0. Segmented structures were exported as stacks of tiff files into Volume Graphics VGStudiomax 2.0, which was used for volume rendering.

2.4. Scanning electronic microscopy

For the examination of external skeletal structures, a dried specimen was coated with gold (EmiTech K500 sputter coater). Micrographs were taken with Philips XL 30 ESEM and ResAlta Scandium software.

2.5. Microscopic photography

To document the coloration and general body shape, the specimens were photographed with Keyence VH-Z20R.

2.6. Line drawings

Exposed body parts of the specimen were drawn with full lines, structures below other sclerites with dotted lines. In Fig. 3 wings and legs were omitted, except basal elements. In Fig. 6 elytra are omitted. The figures were drawn with a pencil based on microscopic observations (with a camera lucida) or on 3D-reconstructions, scanned and finally completed with Adobe Illustrator CC.

2.7. Measurements

Measurements were taken from digital photographs, SEM micrographs, line drawings and 3Dreconstruction according to respective scale bars. The original scale bars can be accurate to 0.001 mm . Considering the calculation error, we kept the accuracy to 0.01 mm . We consistently chose the longest portion in each dimension for measurement (e.g. ventrite of the mesothorax).

2.8. Terminology

The terminology for the thoracic skeleton was adopted from Friedrich et al. (2008) and Larsén (1966). Muscle names of both Larsén (1954) and Friedrich and Beutel (2008) are used for easy comparison with other coleopteran taxa. Both studies were also used in the context of functional interpretations of thoracic structures. Basisubcostale (bsc) as a significant structure during wing stroke is also adopted from Brodsky (1994).

Abbreviations:

1/2/3ax - first/second/third axillary sclerite; aest2/3 - mes-/metanepisternum; alc - alacrista; anp - anterior notal process; ba3 - metabasalare; bsc - basisubcostale; cx1/2/3 - pro-/meso-
/metacoxa; dis - discrimen; el - elytron; elap - articulatory process of elytron; ep2/3 mes/metepimeron; epl1 - proepipleuron; fem1/2/3 - pro-/meso-/metafemur; fu1/2/3 - pro-/meso-/metafurca; hw - hind wing; fup - profurcal process; mnp - median notal process; nt1 pronotum; ph1/2 - pro-/mesophragma; pl1 - propleuron; pls2/3 - meso-/metapleural suture; pn3 - metapostnotum; pnp - posterior notal process; prsc - prealar sclerite; pwp3 metathoracic pleural wing process; sc2/3 - meso-/metascutum; scl2/3 - meso-/metascutellum; scsh - mesoscutellar shield; se - spatulate setae; spi2 - mesothoracic spiracle; su3 metasubalare; tar1/2/3 - pro-/meso-/metatarsus; tib1/2/3 - pro-/meso-/metatibia; tr1/2/3 - pro-/meso-/metatrochanter; v1/2/3 - pro-/meso-/metaventrite.

3. Results

Thoracic morphology of Orectochilus villosus

General appearance

Body length: 9.65 mm , width: 3.83 mm , height: 2.86 mm (length : width : height ratio $=3.4$: 1.3 : 1.0). The thorax appears compact, stream-lined and laterally compressed, with a flat ventral surface and a convex dorsal side. The pronoto-elytral angle is indistinct. The pronotal and elytral surfaces (Fig. 1A) bear a dense vestiture of fine setae.

3.1. Prothorax

Length: 1.87 mm (pronotum), width: 3.21 mm (pronotum), height: 2.16 mm (length : width : height ratio $=1.0: 1.7: 1.2$). Cervical sclerites are missing. The head and prothorax are connected by a cervical membrance, which is not visible externally. A dense pubescence is present on the entire pronotal surface. The anterior and posterior margins of the convex pronotum (nt1: Figs. 1A, C; 3C; 5A) are not distinctly extended. The anterior pronotal area covers the occipital region of the head and appears almost merged with it. The anterior pronotal margin is very finely serrated. The proepipleuron (epl1: Figs. 1B; 3C; 5A) is narrow as in the other Orectochilini (Larsén 1966). The propleuron (pl1: Figs. 1B; 3C; 5A) is delimited by a suture extending obliquely from the antero-ventral margin of the epipleuron to the prothoracic pleuro-coxal joint. The internalized crytopleura are extended mesad and fused with the pronotum, only leaving a narrow tergal region for muscle attachment. This is a character shared in Orectochilini and Enhydrini (Larsén 1966; Baehr 1979). The posterior wall (Fig. 3C) of the prothorax is formed by the posterior area of pronotum, the posterolateral epipleural area and the transverse concave ventral propleural lobe. The posterior pronotum (nt1: Fig. 3C) is narrow in O. villosus, but even narrower in the other Orectochilini (Larsén 1966). The line separating
the epipleural and propleural elements of the posterior wall is indistinct, probably an autapomorphy of Orectochilini (Larsén 1966). A projecting process bears a tuft of spatulate setae (se: Fig. 3C), which form the proprioreceptive sense organ located ventro-laterally on the posterior segmental wall, as in other Orectochilini (Larsén 1966). The process is short and rounded in O. villosus and Gyretes, but blunt in Orectogyrus (Larsén 1966). The proventrite (Figs. 2A; 3C) is bulging medially as in Orectogyrus (Larsén 1966), gradually shortened paramedially and laterally connected with the propleura. Medially it is divided by a distinct median ridge, and another ridge is present along its posterior margin. The prosternal process is reduced, not reaching between the procoxae. The profurca (fu1: Figs. 3C; 4C) bears a long posterior arm, which is bent laterad and reaches deeply into the mesothoracic lumen as in other Orectochilini and Enhydrini (Larsén 1966; Baehr 1979; Beutel 1989b). Anteriorly it bears a vertically oriented profurcal process (fup: Fig. 3C).

The fore legs (Figs. 1B; 2A) are modified as elongate grasping devices. The procoxa (cx1: Figs. 2A; 4A; 3C; 5A) is triangular and only slightly protruding. It lacks a ventral condyle articulating with the prosternal process. The triangular protrochanter (tr1: Figs. 2A; 3C; 5A), equipped with a group of setae ventrally, connects the procoxa with the elongate profemur (fem1: Fig. 1B; 2A) (length: 1.83 mm , width: 0.46 mm ; length : width ratio $=4.0: 1.0$). The anterior profemoral margin bears a row of spines. The elongate protibia (tib1: Figs. 1B; 2A; length: 1.47 mm , width: 0.26 mm ; length : width $=5.7: 1.0$), basally narrow and distally widening, bears a mesal comb of spines. Apical tibial spurs are missing. The sexually dimorphic laterally compressed protarsus (tar1: Figs. 1B; 2A) is composed of five tightly connected tarsomeres. The tarsal segments in males are equipped with a brush-like dense vestiture of adhesive hairs with apical suckers. The distal tarsomere bears a pair of curved claws.

Musculature (Figs. 4; 5; see Table 1 for an overview of all muscles; abbreviations from Friedrich and Beutel (2008) in brackets): M1 (Idlm2) M. pronoti primum: O (= origin): anteromedian area of pronotum; I (= insertion): dorso-lateral area of occipitale. M2 (Idlm1) M. pronoti secundus, bent upwards: O: first phragma; I: dorso-lateral area of occipitale. M3 (Idlm3) M. pronoti tertius, bent upwards: O: first phragma; I: anterior pronotal margin. M5 (Ivlm3) M. prosterni primus: O: basal area of profurca; I: ventro-lateral area of occipitale. M6 (Ivlm1) M. prosterni secundus: O: profurcal process; I: ventral cervical membrane. M7 (Idvm6) M. dorsoventralis primus, broader on pronotum, narrowing towards occipitale: O : central area of pronotum; I: ventro-lateral area of occipitale. M10 (Idvm2/3) M. dorsoventralis quartus: O: anterior margin of prosternum; I: dorso-lateral area of occipitale. M11 (Idvm10) M. dorsoventralis quintus, triangular muscle, narrower on mesoscutum; broadening towards
profurca: O: dorsal area of profurca; I: antero-lateral area of mesoscutum. M13 (Itpm6) M. pronoto-mesepisternalis, broader on pronotum, narrowing towards mesanepisternum: O : central area of pronotum; I: intersegmental membrane anterior to mesanepisternum. M14 (Idvm13) M. noto-trochantinalis, broader on pronotum, narrowing towards procoxa: O: anterolateral area of pronotum; I: lateral procoxal rim. M15 (Idvm16/17) M. noto-coxalis, broader on pronotum, narrowing towards procoxa: O: lateral area of pronotum; I: posterior procoxal rim. M16 (Ipcm4) M. epimero-coxalis, broader on propleuron, narrowing towards procoxa: O: antero-dorsal area of propleuron; I: antero-lateral procoxal rim. M20 (Ipcm8) M. pleuratrochanteralis, broader on prothoracic posterior wall, narrowing towards trochanter: O : prothoracic posterior wall; I: protrochanter. M21 M. pleura-trochanteralis medialis, wide area of origin on procoxa, converging towards protrochanter: O : procoxal mesal wall; I: protrochanter. M22 M. coxa-trochanteralis lateralis, at least two bundles, wide area of origin on procoxa, converging towards protrochanter: O: lateral procoxal wall; I: protrochanter.

The prothoracic muscles, especially those that attach to the cervical region and legs, are similar to those of the other examined species of Gyrinidae or other groups of Coleoptera (Larsén 1966; Baehr 1975; Beutel 1989b; Friedrich and Beutel 2006; Friedrich et al. 2009). The modifications compared with the general coleopteran muscular pattern reported by Larsén (1966: table II) and Beutel and Haas (2000: appendix IV) are the following: M4 (Idlm5) M. pronoti quartus, M8 (Idvm8) M. dorsoventralis secundus, M9 (Idvm5) M. dorsoventralis tertius, M12 (Itpm3?) M. pronoto-pleuralis, M17 (Ipcm8) M. epimero-coxalis, M18 (Iscm1) M. sternocoxalis and M19 (Iscm2) M. furca-coxalis are absent. The origin of M1 (Idlm2) M. pronoti primum is shifted anterad. The origin of $\mathbf{M} 7$ (Idvm6) M. dorsoventralis primus is shifted mesad. The original area of one subcomponent of M15 (Idvm16/17) M. noto-coxalis is transverse and shifted to the postero-lateral region of the pronotum.

3.2. Mesothorax

Length 1.62 mm (mesoventrite + mesocoxa), width 3.48 mm (mesoventrite), height 1.76 mm (from mesoscutellar shield to mesoventrite, without elytra) (length : width : height ratio $=1.0$: 2.1 : 1.1). A flat median concavity is present at the anterior margin of the mesoscutum (sc2: Fig. 3A) and both sides of the sclerite are protruding anteriorly. Paired, distally rounded processes extending postero-ventrad from the anterior concavity form the prophragma (ph1: Fig. 4C) in O. villosus. It is a single and apically truncated structure in Orectogyrus and also a single median lobe in a few species of Gyretes, whereas it is bilobed in the other Gyrinidae (Hatch 1926; Larsén 1966). The narrow sclerotized lateral edge of the mesoscutum lacks
recognizable notal processes. An axillary ligament connects it with the articulatory process of the elytron (elap: Fig. 3A). The area between the mesoscutum and the posterior mesoscutellum is unsclerotized, nearly membranous. The mesoscutellum (scl2: Fig. 3A) bears a sclerotized triangular mesoscutellar shield (scsh: Fig. 3A) on its middle region, and its lateral parts are very narrow. The mesopleuron is triangular. The mesanepisternum (aest2: Fig. 3D) bears a small process on its dorsal margin, arguably a reduced mesobasalare. As in other Orectochilini, the opening between the elytron and laterally expanded dorsal margin of the mesanepisternum is narrow in O. villosus (Larsén 1966), an autapomorphy of the tribe (Beutel 1990). The ventral mesanepisternal margin broadly connects with the dorso-lateral margin of the mesoventrite (v2: Figs. 1B; 2A, B; 3D) and meets the lateral mesocoxal edge posteriorly. This ventral margin forms an excavation for the profemora in the resting position. Postero-mesally the mesanepisternum is adjacent to the narrow triangular mesepimeron (ep2: Fig. 3D), both separated by the mesopleural suture (pls2: Fig. 3D). The mesokatepisternum is completely fused with the main part of the mesoventrite, without a transverse ridge. Anteriorly the mesoventrite forms a triangular process that bears two separate groups of setae, and posteromesally a discrimen (dis: Fig. 4A) is present protruding dorsad into the mesothoracic lumen. The short but well-developed mesofurca (fu2: Fig. 4B) originates dorsally on the discrimen. It bears a large apical disc for muscle attachment.

The mesocoxae are approximately triangular (cx2: Figs. 1B; 3D; 4A; 5A), medially adjacent and diverging antero-laterally. The anterior edge is immovably attached to the posterior margin of the mesoventrite. This is also the case in Orectogyrus, whereas a certain movability is retained in Gyretes (Larsén 1966). The median line separating the round median mesocoxal lamellae is anteriorly continuous with the discrimen. Antero-laterally an extensive triangular apodeme is present for muscle attachment. Dorsally, the large trochanteral tendon for muscle attachment expands to the region of the mesoventrite and the mesanepisternum. Compared with generalized coleopteran walking legs, the distal parts of the middle legs are strongly modified. The mesotrochanter (tr2: Figs. 1B; 2B; 3D; 4A; 5A) connects the mesocoxa with the shortened, flattened and roughly triangular mesofemur (fem2: Figs. 1B; 2B; 5A; length: 0.77 mm , width: 0.45 mm ; length : width ratio $=1.7: 1.0$). The mesofemur broadly connects with the similarly broadened and flattened mesotibia (tib2: Figs. 1B; 2B; 5A; length: 0.75 mm , width: 0.52 mm ; length : width ratio $=1.4: 1.0$), which bears swimming lamellae antero-distally and a row of spines posteriorly. The mesotarsus (tar2: Figs. 1B; 2B) inserts onto the apical mesotibial margin. Its posterior margin is also equipped with swimming lamellae. The internal walls of the mesotibiae and the proximal tarsomere are connected by the cuticular columnae,
as in the other Orectochilini and Enhydrini (Larsén 1966; Beutel 1990). The five tarsomeres are flattened, together forming a fan-shaped structure. The distal margin of the tarsomere 4 is bent dorsad, thus forming a shovel-like structure with the shape of the proximal 3 tarsomeres, similar to the condition found in other Orectochilini and some Enhydrini (Larsén 1966; Beutel 1990). Tarsomere 5 is proximo-mesally connected with the tarsomere 4 and bears a pair of curved claws apically.

The elytra (el: Figs. 1A, C; 5A) are posteriorly truncated and bear a dense vestiture of short and thin setae, similar to the pronotal vestiture. The pubescent dorsal side of the body is a diagnostic character of Spanglerogyrus, Heterogyrus and Orectochilini (Folkert 1979; Larsén 1966; Miller and Bergsten 2012). Elytral striae are absent. The glossula is present, as in the other Orectochilini and Enhydrini (Larsén 1966; Beutel 1990).

Musculature (Figs. 4; 5; Table 1): M28 (IIdlm1) M. mesonoti primus: O: first phragma; I: second phragma. M30 (Ivlm7) M. mesosterni secundus: O: basal area of profurca; I: mesofurcal arm. M33 (IItpm2) M. noto-pleuralis: O: process of mesopleural ridge; I: dorsolateral area of intersegmental membrance between pro- and mesothorax. M38 (Ispm5) M. profurca-mesepisternalis: O: profurcal arm; I: anterior margin of mesanepisternum. M40 (IIdvm4/5) M. noto-coxalis, slightly broader medially: O: lateral area of mesoscutum; I: postero-lateral mesocoxal rim. M41 (IIpcm4) M. episterno-coxalis, broader on mesanepisternum, narrowing towards mesocoxa: O: central area of mesanepisternum; I: anterolateral mesocoxal rim. M43 (IIdvm6) M. coxa-subalaris, slightly broader medially: O: membranous area between mesoscutum and mesanepisternum; I: postero-lateral mesocoxal rim. M46 (IIscm2) M. furca-coxalis posterior, broader on mesofurca, narrowing towards mesocoxa: O: basal area of mesofurca; I: posterior mesocoxal rim. M47 (IIdvm7) M. noto-trochanteralis: O: mesoscutum; I: mesotrochanter. M48 (IIpcm6) M. episterno-trochanteralis, triangular, narrower on mesanepisternum, broadening towards mesotrochanter: O : dorsal area of mesanepisternum; I: mesotrochanteral tendon. M51 (?) M. sterno-trochanteralis: O: invaginated area of mesoventrite; I: mesotrochanteral tendon. M52 (IIscm6) M. furcatrochanteralis, broader on mesofurca, narrowing towards mesocoxa: O: antero-ventral area of mesofurcal arm; I: mesotrochanter. M53 M. coxa-trochanteralis medialis, several bundles, distributed over wide area of mesocoxa, converging towards mesotrochanter: O: mesocoxal anterior rim and median wall; I: mesotrochanter. M54 M. coxa-trochanteralis lateralis, two bundles, the anterior one larger and stronger, the posterior one shorter: O: lateral mesocoxal wall; I: mesotrochanter.

The muscular apparatus of the mesothorax comprises only 12 muscles (excl. M53 and M54 as intrinsic mesocoxal muscles), compared to 25 in a more plesiomorphic pattern in other groups of Adephaga and in Polyphaga (Larsén 1966; Beutel and Haas 1966) and 33 in the archostematan Tetraphalerus bruchi Heller, 1913 (Friedrich et al. 2009). According to the coleopteran musculature by Larsén (1954), M29 (IIdlm2) M. mesonoti secundus, M31 (Ivlm9) M. mesosterni secundus, M32 (IIdvm8) M. dorsoventralis, M34 (IItpm10?) M. noto-epimeralis, M35 (IItpm10) M. epimero-subalaris, M36 (IItpm7 \& 9) M. pleura-alaris, M37 (IIspm2) M. furca-pleuralis, M39 (IIdvm2) M. noto-trochantinalis, M42 (IIpcm3) M. episterno-coxalis, M44 (IIscm1) M. furca-coxalis anterior, M45 (IIscm4) M. furca-coxalis lateralis, M49 (?) M. epimero-trochanteralis and M50 (IIpcm5) M. trochantero-basalaris are absent.

3.3. Metathorax

Length: 0.98 mm (metacoxa), width: 3.28 mm (paired metacoxae), height: 1.87 mm (from central metascutal area to level of ventral mesocoxal surface) (without hind wings) (length : width $:$ height $=1.0: 3.3: 1.9$. The propulsive force during flight is only created by the metathorax as in the other beetles and in Strepsiptera (posteromotorism; e.g. Friedrich et al. 2010). The dorsal metathoracic parts are large compared with the corresponding mesothoracic elements. The median portion of the metascutum (sc3: Fig. 3A, B, D) is short and lacks a membranous area, but is widened laterally, as in other Orectochilini and Enhydrini (Hatch 1926; Larsén 1966; Beutel 1990). The paired processes of the anterior metascutal margin bends postero-ventrad into the thoracic lumen thus forming the mesophragma (ph2: Fig. 4D). Anterolaterally the metascutum bears a very small sclerotized process, the metaprealar sclerite (prsc: Fig. 3D), similar to a homologous structure in Orectogyrus (Larsén 1966). The alacristae (alc: Fig. 3B) are short (length: 0.24 mm) but distinctly developed, with a sharp posterior edge. A dense field of microtrichia is present on a transverse posterior metascutal concavity. The metascutellum (scl3: Fig. 3B, D) attaches to the posterior metascutal margin. Postero-laterally the postnotum (pn3: Fig. 3B, D) is inflected below the mesoscutum. Its lateral part forms a triangle which is distinctly widening laterally. No metaphragma is developed. The oblique metapleural suture (pls3: Fig. 3D) divides the metapleuron into the anterior metanepisternum (aest3: Fig. 3D) and posterior metepimeron (ep3: Fig. 3D). The posterior edge of the narrow metabasalare (ba3: Fig. 3D) runs parallel to the metathoracic pleural wing process (pwp3: Fig. 3D) and comes close to the dorsal area of the metanepisternum ventrally. The metabasalare of other species in Orectochilus and Orectochilini is solidly attached to the metanepisternum (Larsén 1966). The metasubalare (sa3: Fig. 3D) is very small (length: 0.02 mm , height: 0.02
mm) and embedded in the membranous area above the sclerotized metapleuron. The metanepisternum is narrower than in Orectogyrus and Gyretes (Larsén 1966). The metepimeron connects with the lateral metapostnotal edge postero-dorsally, and with a semicircular disc-like element formed by the first abdominal pleuron.

The metaventrite (v3: Figs. 1B; 2B; 3D; 4A; 5A) reaches its maximum length at midline, with narrow oblique lateral wings enclosed between the posterior margin of the mesocoxae and the anterior margin of the metacoxae. The metakatepisternum is fused with the ventrite, without a trace of a transverse ridge. The discrimen is also lacking, and the metatrochantin is not visible externally. The metaventrite bears a narrow median process (width: 0.68 mm) fitting between the postero-median mesocoxal edges. A visible cleft separates the dorsal metanepisternum from the ventral metaventrite and metacoxa. The metacoxae (cx3: Figs. 1B; 2B, C; 3D; 4A; 5A) are greatly enlarged compared to most other beetles and rectangular, extending far anterolaterad as in other Orectochilini and Gyrinini (Hatch 1926; Larsén 1966). The oblique anterior margin is fused with the posterior margin of the metaventrite. An anterolateral extension reaches into the metathoracic lumen as a disc-like structure for muscle attachment. The fused median metacoxal lamellae are longer than those of the mesocoxae. The connection area of the paired metacoxae is visible as a median suture as in Heterogyrus and other Gyrininae (Larsén 1966). The narrow metafurca (fu3: Fig. 4B) with paired parallel arms extends antero-dorsad from the metacoxal lamella and almost reaches the mesofurca anteriorly. The hind legs as a whole are larger than the middle legs. Their distal parts are similar, also forming shortened paddle-like structures for swimming (metafemur length: 0.98 mm , width: 0.72 mm ; length : width ratio $=1.4: 1.0$. metatibia length: 1.11 mm , width: 0.79 mm ; length : width ratio $=1.4: 1.0$). The internal walls of the metatibiae (tib3: Figs. 1B; 2C; 5A) and the proximal tarsomere are also connected by cuticular columnae (Larsén 1966). Tarsomere 4 is similar to its mesothoracic equivalent, also forming a shovel-like structure with the proximal 3 tarsomeres. This structure is similar to the condition found in other Orectochilini and Enhydrini (Larsén 1966; Beutel 1990).

The sclerotized anterior notal process (anp: Fig. 3B) is attached to the middle region of the lateral metascutal margin. The elongate first axillary sclerite (1ax: Fig. 3B) is separated into two parts by a suture in its middle section, and its antero-proximal part is close to the basisubcostale (bsc: Fig. 3B). The narrow second axillary sclerite (2ax: Fig. 3B) is tightly adjacent to the distal portion of the mesal margin of the first axillary sclerite. The third axillary sclerite (3ax: Fig. 3B) bears three processes and a small proximal sclerite close to the posterior part of the first axillary sclerite (length: 0.80 mm , width: 0.11 mm). The median plate (mp : Fig.

3B) is weakly sclerotized and not distinctly delimited from the membranous area of the wing base. It is divided by a fold along its midline.

Musculature (Figs. 4; 5; Table 1): M62 (IIvlm3) M. metasterni primus: O: posterior surface of mesofurcal arm; I: anteriorly on metafurcal arm. M67 (IIItpm2) M. pleura-praealaris: O: metapleural wing process; I: metaprealar sclerite. M69 (IIItpm3) M. noto-basalaris, elongated triangular: O: lateral margin of metascutum; I: metabasalare. M70 (IIItpm10) M. epimero-subalaris, triangular, broader on metapostnotum, narrowing towards metasubalare: O : postero-ventral margin of metapostnotum; I: metasubalare. M71a (IIItpm9) M. pleura-alaris a, triangular, broader on metapleural ridge; narrowing towards third axillary sclerite: O: median area of metapleural ridge; I: third axillary sclerite. M71b (IIItpm7) M. pleura-alaris b, elongated triangular, broader on metanepisternum, narrowing towards third axillary sclerite: O: anterodorsal area of metanepisternum; I: third axillary sclerite. M72 (IIIppm1) M. sterno-episternalis: O: antero-dorsal area of metanepisternum; I: dorsal area of metaventrite. M76 (IIIdvm5) M. noto-coxalis posterior, broad origin on metascutum, converging on a tendon inserted on metacoxa: O: postero-lateral area of metascutum; I: postero-lateral metacoxal rim. M84 (IIIdvm7) M. noto-trochanteralis: O: dorsal area of metascutum; I: large disc-shape apodeme of metatrochanter. M85 (IIIscm6) M. furca-trochanteralis: O: metafurcal arm; I: metatrochanter. M86 M. coxa-trochanteralis medialis, several bundles: O: anterior metacoxal rim and mesal wall; I: metatrochanter. M87 M. coxa-trochanteralis lateralis, two bundles, the anterior one stronger with fibers converging medially, the posterior one shorter: O: lateral metacoxal rim; I: metatrochanter. Mx, elongated conical, broader on first abdominal pleuron, narrowing towards metacoxa: O: semicircular disc of first abdominal pleuron; I: postero-lateral metacoxal rim.

The metathoracic muscular apparatus metathorax comprises only 10 muscles (excl. M86 and M87 as intrinsic metacoxal muscles, Mx as abdominal muscle), compared to 27 in a more plesiomorphic pattern in other groups of Adephaga and in Polyphaga (Larsén 1966; Beutel and Haas 2000) and 36 in the archostematan Tetraphalerus bruchi (Friedrich et al. 2009). Compared to the coleopteran muscular pattern reported by Larsén (1966), M60 (IIIdlm1) M. metanoti primus, M61 (IIIdlm2) M. metanoti secundus, M63 (IIvlm5) M. metasterni secundus, M64 (IIIdvm1) M. dorsoventralis primus, M65 (IIIdvm8) M. dorsoventralis secundus, M66 (IIIdvm8) M. dorsoventralis tertius, M68 (IIItpm6) M. noto-pleuralis, M73 (IIIspm1) M. sterno-episternalis, M74 (IIIdvm2) M. noto-trochantinalis, M75 (IIIdvm4) M. noto-coxalis anterior, M77 (IIIpcm4) M. episterno-coxalis, M78 (IIIpcm3) M. coxa-basalaris, M79 (IIIdvm6) M. coxa-subalaris, M80 (IIscm7?) M. sterno-coxalis, M81 (IIIscm1) M. furcacoxalis anterior, M82 (IIIscm4) M. furca-coxalis lateralis and M83 (IIIscm2) M. furca-coxalis
posterior are absent. Only two dorsoventral muscles M76 (IIIdvm5) and M84 (IIIdvm7) are present as indirect flight muscles. M67 (IIItpm2), M69 (IIItpm3), M70 (IIItpm10) and M71 (IIItpm7 \& 9) are present as direct flight muscles. M85 (IIIscm6) is present, but the other furcacoxal muscles are absent.

4. Discussion

4.1. Phylogenetic and evolutionary interpretations

Even though Gyrinidae are arguably the "basal" sistergroup of the remaining adephagan families and may have originated in the early Triassic or even the late Permian (Ponomarenko 1977; Beutel and Roughley 1988; Beutel et al. 2013; Baca et al. 2017), their morphology and life habits are distinctly modified compared to the hypothetical groundplan of the suborder and of Coleoptera (Beutel 1997; Beutel and Haas 2000; Friedrich et al. 2009). As is sometimes the case with so-called "basal groups" (e.g. Monotremata in mammals or Struthiones in birds; Mickoleit 2004), the autapomorphies (Beutel 1989a, b, 1990; Miller and Bergsten 2012) outweigh few preserved plesiomorphies, such as the lack of the torsion of aedeagus or the retained intrinsic movability of the larval maxilla (Beutel and Roughley 1988). This mainly reflects adaptations to surface swimming in the case of adults, and a preference for greater water depths of the larvae, which are equipped with tracheal gills (Larsén 1966; Beutel and Roughley 1988).

The forelegs of Gyrinidae are long grasping devices suitable for seizing prey objects on the water surface, apparently an autapomorphy of the family (Beutel 1989b). In contrast to most other groups of Adephaga, the ventral procoxal joint is reduced in Gyrinidae, with the exception of the "ancestral" Spanglerogyrus (Beutel 1989b), increasing the degrees of freedom at the leg base. This character supports the monophyletic origin of the subfamilies Heterogyrinae (Heterogyrus) and Gyrininae (Miller and Bergsten 2012; Beutel et al. 2017). Other features characterizing this clade are the presence of a prothoracic proprioreceptive organ with spatulate setae (se: Fig. 3C) and the laterally compressed protarsi (tar1: Fig. 1B; 2A). In contrast to the pterothoracic segments, the musculature of the prothorax is plesiomorphic, with a welldeveloped set of neck muscles moving the head and normally developed leg muscles, similar as in other groups of Coleoptera.

The mesothorax of Gyrinidae differs from all other Adephaga by the extensive and flat mesoventrite, which does not articulate with the prosternal process. Phylogenetically this character is ambiguous. Arguably it is a plesiomorphic trait compared with the short and grooved mesoventrite found in the other aquatic families, and also in the terrestrial

Trachypachidae and Carabidae (partim) (Beutel and Roughley 1988; Beutel 1997). However, this structure is apparently suitable for gliding on the surface film of the water and more likely a secondarily acquired feature and autapomorphy of Gyrinidae.

The most conspicuous (and unique) synapomorphy of Heterogyrus and Gyrininae is the transformation of the middle and hind legs into shortened and flattened paddle-like structures (Fig. 2B, C), with a fan-shaped tarsus. The swimming lamellae (Larsén 1966), which do not occur in any other aquatic group of beetles, create 52% of the propulsion force (Nachtigall 1961). These conditions are in contrast to the moderately modified middle and hind legs of Dytiscidae and Spanglerogyrus (Beutel 1990; Nachtigall 1960), which are more or less elongated and equipped with simple or feather-like swimming hairs, respectively. The paddlelike middle and hind legs enable whirligig beetles to swim rapidly on the water surface, with a frequency of the hind legs of about 60 strokes $/ \mathrm{sec}$ and about $30 / \mathrm{sec}$ of the middle legs (Bott 1928; Nachtigall 1961). It was pointed out by Nachtigall (1961) that the paddle-like legs of Gyrininae exceed the performance of comparable technical machines and form the best-known thrust apparatus in the animal kingdom. The distal leg elements of Gyrinus investigated by Nachtigall (1961) are plesiomorphic compared with those of Orectochilini and most Enhydrini. The distal tarsomeres of Orectochilini and most enhydrine genera form a shovel-like structure with the basal ones (Larsén 1966; Beutel 1990), which likely improves the efficiency.

An unusual apomorphy of Orectochilini is the far-reaching reduction of the metathoracic muscular system. Compared with other groups of Neoptera, Coleoptera in general are characterized by a simplified pterothoracic muscular system, probably linked with the strong sclerotization without exposed membranes and reduced degrees of freedom, especially at the leg bases (Beutel and Haas 2000; Friedrich et al. 2009). In contrast to more than 100 pterothoracic muscles suggested for the neopteran groundplan (Friedrich and Beutel 2008), Larsén (1966) proposed 52 muscles as a plesiomorphic status of Coleoptera after a broad investigation of Adephaga and Polyphaga. More recent studies suggest that more muscles are present in the coleopteran groundplan (Beutel and Haas 2000; Friedrich et al. 2009). Sixty-nine muscles were identified in Tetraphalerus bruchi, a species of Ommatidae in Archostemata, which is currently recognized as an evolutionary relict (Friedrich et al. 2009). Other thoracic plesiomorphies preserved in Ommatidae (and the closely related Cupedidae) are a transverse ridge of the mesoventrite and exposed metatrochantins (Baehr 1975; Beutel and Haas 2000; Friedrich et al. 2009). Within Orectochilini, only 22 pterothoracic muscles are preserved in O. villosus, 17 in Gyretes zimmermanni Ochs, 1929 and 16 in Orectogyrus ornaticollis Aubé, 1838 (Table 1; Larsén 1954). Among them, 10 are preserved in the metathorax of O. villosus and 7
in the metathorax of the other two species examined by Larsén (1966). This is in agreement with a general trend of decreasing complexity of the thoracic musculature in Pterygota and in Coleoptera (Beutel and Haas 2000; Friedrich et al. 2009; Friedrich and Beutel 2010). The metathoracic muscular number observed in Orectochilini are the lowest among 54 beetles examined by Larsén (1966), also including flightless species if degenerated muscles are considered as present (marked as 0 in Larsén 1966), and also less than those observed species in more recent studies on the thorax of Coleoptera (Baehr 1975; Beutel 1986, 1988; Belkaceme 1991; Beutel and Komarek 2004; Friedrich and Beutel 2006). Derived skeletal features correlated with the muscular reductions exclude the interpretation that conditions observed in Orectochilini are due to slight intraspecific variation of the flight muscles. A conspicuous of feature Orectochilini (and the enhydrine genera) is the medially shortened metanotum (Hatch 1925; Larsén 1966; Beutel 1990), which provides limited space for the dorsoventral muscles and no suitable attachment areas for dorsal longitudinal muscles. The loss of the metaphragma is apparently also linked with this modification.

4.2. Functional interpretations of the locomotor apparatus (Fig. 6)

Coleoptera are characterized by reduced degrees of freedom in their thoracic skeleton, and also a distinctly reduced muscular system compared with other groups of Neoptera (Beutel and Haas 2000). The tendency to increase the efficiency and economy of the locomotor apparatus is intensified in the non-archostematan suborders, notably in Polyphaga and Myxophaga (Beutel and Haas 2000). However, a culminating point is reached in the adephagan tribe Orectochilini of Gyrinidae, for instance O. villosus. Whriligig beetles in general have optimized surface swimming and retained the capacity of flight with a distinctly reduced pterothoracic muscle set (Larsén 1966).

The dorsal longitudinal muscles are completely missing in Orectochilini and other groups of Gyrinidae (Larsén 1966), apparently linked with modifications of the metanotum (Beutel 1990). They are usually important elements of a flight apparatus operating with the neopteran (and ephemeropteran) indirect mechanism (Brodsky 1994). The function of the metathoracic dorsal longitudinal muscle M60 (IIIdlm1) in Coleoptera is the longitudinal contraction of the notum, which results in the initial depression of the wings with the first axillary sclerite (Figs. 6Ai, Aii; Brodsky 1994; Haas and Beutel 2001). This muscle is not only lacking in Orectochilini but also in Heterogyrus and Gyrininae (pers. obs. R.G. Beutel; Larsén 1966). The intrinsic elasticity of the metanotum alone (Larsén 1966) does not provide a sufficient explanation of the mechanism without adequate muscular control. Interestingly, the dorsal longitudinal
muscles are not only reduced in Gyrinidae, but also poorly developed in two distantly related orders with posteromotorism, Orthoptera and Blattodea (Polyneoptera). In these cases, this is compensated by the metabasalar muscles according to Brodsky (1994). In most examined species of Gyrininae, the tergo-pleural muscle M69 (IIItpm3) is present and the only muscle attached to the metabasalare (Larsén 1966; Beutel 1990). Therefore, it is likely that this muscle takes over the function of hind wing depression (Figs. 6Bi, Bii), with adduction and pronation of the hind wing through the metabasalare as additional functions (Brodsky 1994). However, M69 (IIItpm3) is absent in most Orectochilini, and the metabasalare is solidly attached to the metanepisternum in species of this tribe (Larsén 1966; Beutel 1990). We hypothesize that the functions are taken over by the metapleural muscle M72 (IIIppm1) which moves the sclerite, with a cleft forming a joint between the metanepisternum, the metaventrite and the metacoxa (Fig. 3D) (Larsén 1966: Orectochilini and Dineutus). M72 (IIIppm1) is missing in Gyrinus and Aulonogyrus (Larsén 1954, 1966; Beutel 1990), whereas M69 (IIItpm3) is present in the species of both genera. Under the control of the metabasalare, the basisubcostale also becomes responsible for the depression (Brodsky 1994). The control of the first axillary sclerite is shifted from the median notal process to the anterior notal process (Brodsky 1994), which is generally preserved in Gyrinidae (Hatch 1926; Larsén 1966; Beutel 1990).

The large metathoracic dorso-ventral muscle M84 (IIIdvm7; in O. villosus length: 2.20 mm , width: 0.45 mm ; length : width ratio $=4.9: 1.0$) of Gyrininae (Larsén 1966) must play a dominant role as a levator of the hind wing, considering the absence of most other dorso-ventral muscles (Fig. 6F; Larsén 1966). Additionally, this muscle is responsible for the backstroke of the hind leg during swimming, as synergist of the large metacoxal muscle M87 (Fig. 6F; Larsén 1966; in O. villosus length: 1.80 mm , width: 1.69 mm). During this activity, the hind wings and associated elements of the flight apparatus are shielded and locked by the elytra, with the mesonotal scutellar shield and the metanotal alacristae forming a combined elytral arresting mechanism (Larsén 1966; Beutel 1990; Beutel and Haas 2000). The activity of M84 (IIIdvm7) during flight is probably supported by another dorso-ventral muscle, M76 (IIIdvm5). However, as this muscle is extremely slender (width 0.07 mm) compared with M84 (IIIdvm7), its effect is probably minimal.

In the groundplan of Coleoptera and in most species examined, two muscles connect with the metasubalare, the dorsal-ventral muscle M79 (IIIdvm6) and the tergo-pleural muscle M70 (IIItpm10) (Fig. 6C; Larsén 1954; Haas and Beutel 2001; Friedrich et al. 2009; Friedrich and Beutel 2010). Due to the absence or reduction of M79 (IIIdvm6) in Gyrinidae except Dineutus (Larsén 1966), its function has to be taken over by another muscle (Fig. 6D). It is conceivable
that the function of supination (Brodsky 1994) is taken over by M70 (IIItpm10) in Orectochilini and most other Gyrinidae (Larsén 1966).

It is noteworthy that the two bundles of the tergo-pleural muscle M71 (IIItpm7 and 9) are absent in the two orectochiline species O. ornaticollis and G. zimmermanni (Larsén 1966), as in some other coleopteran species with reduced flight apparatus (Haas and Beutel 2001). As the only muscle connected with the third axillary sclerite in Neoptera (Friedrich and Beutel 2008), it is involved in at least three of the four stages of the wing stroke (Brodsky 1994), also initiating the processes of unfolding and folding the wings (Brodsky 1994; Haas and Beutel 2001). We cannot exclude the possibility that these two orectochiline species are flightless. However, flight appears rather possible, as the hind wings and skeletal parts of their flight apparatus show no observable traits of reduction compared with the other Gyrinidae (Larsén 1966). If indeed individuals of these two species are able to fly, it is unclear how the loss of M71 is compensated for.

It was pointed out that elytral movement of beetles play a minor role in creating propulsive forces during flight (Haas and Beutel 2001). Their obvious function is protecting the hind wings at rest, also shielding and locking the flight apparatus during swimming in Gyrinidae (Haas and Beutel 2001; Larsén 1966). Aside from this, they are probably also involved in flight control, improving the maneuverability of beetles and directing the airflow to the hind wings (Brodsky 1994). It was demonstrated for species of Orthoptera that the control of posteromotoric flight is the most important function of the leathery forewings (Brodsky 1994). The synchronous pronation and supination of coleopteran elytra during flight is probably not only a passive movement (Haas and Beutel 2001), but also under the control of a series of mesothoracic flight-related muscles associated with the articulatory processes of the elytra (elap: Fig. 3A).

The pterothoracic segments of Orectochilini differ strongly from conditions observed in other groups of Coleoptera (e.g. Larsén 1966; Belkaceme 1991; Beutel 1986, 1988; Beutel and Komarek 2004, Friedrich et al. 2009), with a remarkable degree of reduction of the muscular system. It is conceivable that this optimizes efficiency, especially in the context of dual alternative functions of flight and swimming on the water surface. Future investigations with biomechanical and physiological approaches may improve the understanding of the Orectochilini locomotor system, and possibly inspire interesting applications in bionics in the future.

Acknowledgements

We are very grateful to the editorial team, and to Dr. John Lawrence (Gympie, CSIRO Canberra) and Prof. Dr. Darren Pollock (Eastern New Mexico University) for their valuable comments. This project is financially supported by the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 642241.

References

Aubé C (1838) Species général des Hydrocanthares et Gyriniens. Méquignon Pére et Fils, Paris. Baca SM, Alana A, Gustafson GT, Short AEZ (2017) Ultraconserved elements show utility in phylogenetic inference of Adephaga (Coleoptera) and suggest paraphyly of "Hydradephaga". Syst Entomol. DOI: 10.1111/syen. 12244.
Baehr M (1975) Skelett und Muskulatur des Thorax von Priacma serrata Leconte (Coleoptera, Cupedidae). Z Morph Tiere 81:55-101.
Belkaceme T (1991) Skelet und Muskulatur des Kopfes und Thorax von Noterus laevis Sturm. Ein Beitrag zur Morphologie und Phylogenie der Noteridae (Coleoptera: Adephaga). Stuttg Beitr Naturk (A) 462:1-94.

Beutel RG (1986) Skelet und Muskulatur des Kopfes und Thorax von Hygrobia tarda (Herbst). Ein Beitrag zur Klärung der phylogenetischen Beziehungen der Hydradephaga (Insecta: Coleoptera). Stuttg Beitr Naturk (A) 388:1-54.
Beutel RG (1988) Studies of the metathorax of the trout-stream beetle, Amphizoa lecontei Matthews (Coleoptera: Amphizoidae): Contribution towards clarification of the systematic position of Amphizoidae. Int J Ins Morph Embryol 17:63-81.
Beutel RG (1989a) The head of Spanglerogyrus albiventris Folkerts (Coleoptera: Gyrinidae). Contribution towards clarification of the phylogeny of Gyrinidae and Adephaga. Zool Jb Anat 118:431-461.
Beutel RG (1989b) The prothorax of Spanglerogyrus albiventris Folkerts, 1979 (Coleoptera, Gyrinidae). Contribution towards clarification of the phylogeny of Gyrinidae. Entomol Basiliensia 13:151-173.

Beutel RG (1990) Phylogenetic analysis of the family Gyrinidae (Coleoptera) based on mesoand metathoracic characters. Quaest Ent 26:163-191.
Beutel RG (1997) Über Phylogenese und Evolution der Coleoptera (Insecta), insbesondere der Adephaga. Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg NF 31:1164.

Beutel RG, Haas F (2000) Phylogenetic relationships of the suborders of Coleoptera (Insecta). Cladistics 16:103-141.

Beutel RG, Komarek A (2004) Comparative study of thoracic structures of adults of Hydrophiloidea and Histeroidea with phylogenetic implications (Coleoptera, Polyphaga). Org Divers Evol 4:1-34.
Beutel RG, Roughley RE (1988) On the systematic position of the family Gyrinidae (Coleoptera: Adephaga). Z Zool Syst Evolut -Forsch 26:380-400.

Beutel RG, Wang B, Tan JJ, Ge SQ, Ren D, Yang XK (2013) On the phylogeny and evolution of Mesozoic and extant lineages of Adephaga (Coleoptera, Insecta). Cladistics 29:147165.

Beutel RG, Yan E, Richter A, Büsse S, Miller KB, Yavorskaya M, Wipfler B (2017) The head of Heterogyrus milloti (Coleoptera: Gyrinidae) and its phylogenetic implications. Arthr Syst Phyl (in press).
Bott RH (1928) Beitrag zur Kenntnis von Gyrinus natator substriatus Steph. Z Morph Ökol Tiere 10:207-306.

Brinck P (1982) Results of the Austrian-Indian Hydrobiological Mission 1976 to the AndamanIslands: Part VIII: The whirligig beetles (Gyrinidae) of the Andaman Islands. Ann Naturhist Mus Wien Ser B 225-227.
Brodsky AK (1994) The Evolution of Insect Flight, $2^{\text {nd }}$ Ed. Oxford University Press, Oxford, New York, Tokyo.
Folkerts GW (1979) Spanglerogyrus albiventris, a primitive new genus and species of Gyrinidae (Coleoptera) from Alabama. Coleopt Bull 33:1-8.
Friedrich F, Beutel RG (2006) The pterothoracic skeletomuscular system of Scirtoidea (Coleoptera: Polyphaga) and its implications for the relationships of the beetle suborders. J Zool Syst Evolut Res 44:290-315.
Friedrich F, Beutel RG (2008) The thorax of Zorotypus (Hexapoda, Zoraptera) and a new nomenclature for the musculature of Neoptera. Arthr Str Dev 37:29-54.
Friedrich F, Beutel RG (2010) Goodbye Halteria? The thoracic morphology of Endopterygota (Insecta) and its phylogenetic implications. Cladistics 26:1-34.
Friedrich F, Farrell BD, Beutel RG (2009) The thoracic morphology of Archostemata and the relationships of the extant suborders of Coleoptera (Hexapoda). Cladistics 24:1-37.
Gyllenhal L. (1808) Insecta Suecica, Class I. Coleoptera sive Eleuterata. Tomus I [Pars 1]. F. J. Leverentz, Scaris [Skara].

Haas F, Beutel RG (2001) Control of wing folding and the functional morphology of the wing base in Coleoptera. Zoology 104:81-168.

Hatch MH (1925) The phylogeny and phylogenetical tendencies of Gyrinidae. Pap Mich Acad Sci Arts Letts 5:429-467.

Hatch MH (1926) The morphology of Gyrinidae. Pap Mich Acd Sci Arts Letts 7:311-350.
Heller KM (1913) Ein neuer Cupedidae. Wien Entomol Ztg 32:235-237.
Koeth M, Friedrich F, Pohl H, Beutel RG (2012) The thoracic skeleton-muscular system of Mengenilla (Strepsiptera: Mengenillidae) and its phylogenetic implications. Arthropod Struct Dev 30:1-13.

Larsén O (1954) Die Flugorgane der Gyrinidae (Coleoptera). Opusc Entomol 19:74-214.
Larsén O (1966) On the morphology and function of the locomotor organs of the Gyrinidae and other Coleoptera. Opusc Entomol (Suppl) 30:1-241.
Legros C (1953) Un gyrinide nouveau de Madagascar (Coeloptera). Naturaliste Malgache 5(1):63-67.
Maki T (1936) Studies on the skeletal structure, musculature and nervous system of the Alder Fly Chauliodes formosanus Petersen. Mem Fac Sci Agric Taihoku Imp Univ 16:117-243. McKenna DD, Wild AL, Kanda K, Bellamy CL, Beutel RG, Caterino MS, Farnum CW, Hawks DC, Ivie MA, Jameson ML, Leschen RAB, Marvaldi AE, HcHugh JV, Newton AF, Robertson JA, Thayer MK, Whiting MF, Lawrence JF, Ślipiński A, Maddison DR, Farrel BD (2015) The beetle tree of life reveals Coleoptera survived end Permain mass extinction to diversify during the Cretaceous terrestrial revolution. Syst Entomol 40:835880.

Mickoleit, G. (2004) Phylogenetische Systematik der Wirbeltiere. Verlag Dr. Friedrich Pfeil, München.
Miller KB, Bergsten J (2012) Phylogeny and classification of whirligig beetles (Coleoptera: Gyrinidae): relaxed-clock model outperforms parsimony and time-free Bayesian analyses. Syst Entomol 37:706-746.
Müller OF (1776) Zoologie Danicae Prodromus seu Animalium Daniae et Norvegiae indigenarum characteres, nomina, et synonyma imprimis popularium. Hafniae, Typiis Hallageriis.
Nachtigall W (1960) Über Kinematik, Dynamik und Energetik des Schwimmens einheimischer Dytisciden. Zugleich ein Beitrag zur Anwendung von Kurzzeiphotographie und Hochfrequenzkinematographie auf biologische Probleme. Z Vergl Phys 43:48-118.

Nachtigall W (1961) Funktionelle Morphologie, Kinematik und Hydromechanik des Ruderapparates von Gyrinus. Z Vergl Phys 45:193-226.
Ochs G (1929) The present status of knowledge about Chinese Gyrinidae. Lingnan Sci J 7:715720.

Ochs G (1966) Beiträge zur Kenntnis der Nepalischen Gyriniden (Col.). In Khumbu HimalErgebnisse des Forschungsunternehmens Nepal Himalaya. Springer, Berlin, Heidelberg 243-246.

Omer-Cooper J (1934) Notes on the Gyrinidae. Odbitka Arch Hydrobiol Rybactwa 8:1-26.
Ponomarenko AG (1977) Suborder Adephaga. Tr Paleont Inst Akad Nauk SSSR 161:1-104. [in Russian]

Table 1: The Thoracic Musculature of Orectochilini
83 (Muscular nomenclatures from Larsén (1954) and Friedrich and Beutel (2008) are listed respectively in the first and second rows due to homology (Friedrich et al. 2009). Here we revise M38 is homologous as Ispm5 instead of Ispm6, according to the origin and insertion of this muscle in the same side of the insect body. Muscle present is represented with " + " in green, absent with "-" in orange, unsure with "?" or "/"in yellow.)

Larsén 1954	Friedrich \& Beutel 2008	Orectochilus villosus	Orectogyrus ornaticollis	$\begin{gathered} \text { Gyetes } \\ \text { zimmermanni } \end{gathered}$
Prothorax				
M1	IdIm2	+	+	-
M2	IdIm1	+	+	+
M3	IdIm3	+	+	+
M4	IdIm5	-	-	-
M5	Ivlm3	+	+	+
M6	Ivlm1	+	+	+
M7	Idvm6	+	+	+
M8	Idvm8	-	-	-
M9	Idvm5	-	-	-
M10	Idvm2/3	+	+	+
M11	Idvm10	+	+	+
M12	Itpm3?	-	-	-
M13	Itpm6	+	+	+
M14	Idvm13	+	+	+
M15	Idvm16/17	+	+	+
M16	Ipcm4	+	+	+
M17	Ipcm8	-	-	-
M18	Iscm1	-	-	-
M19	Iscm2	-	-	-
M20	Ipcm8	+	+	+
M21	1	+	1	1
M22	1	+	,	1
Mesothorax				
M28	IldIm1	+	+	+
M29	IIdIm2	-	-	-
M30	Ivlm7	+	+	+
M31	Ivlm9	$-$	+	+
M32	Ildvm8	-	-	-
M33	Iltpm2	+	+	-
M34?/35	Iltpm10	$-$	-	-
M36a	Iltpm9	-	-	-
M36b	Iltpm7	-	-	-
M37	Ilspm2	-	-	-
M38	Ispm5	+	+	+
M39	Ildvm2	-	-	-
M40	Ildvm4/5	+	-	-
M41	Ilpcm4	+	-	+
M42	Ilpcm3	-	-	-
M43	Ildvm6	+	-	-
M44	Ilscm1	$-$	-	-
M45	Ilscm4	-	-	-
M46	Ilscm2	+	-	+
M47	Ildvm7	+	+	+
M48	Ilpcm6	+	+	+
M49	1	-	-	-
M50	lipcm5	-	-	-
M51	?	+	+	+
M52	Ilscm6	+	+	+
M53	1	+	1	1
M54	1	+	1	1

688 689 690

Metathorax				
M60	Illdim1	-	-	-
M61	Illdim2	-	-	-
M62	Ilvim3	+	+	+
M63	Ilvim5	-	-	-
M64	Illdvm1	-	-	-
M65	Illdvm8	-	-	-
M66	Illdvm8	-	-	-
M67	Illtpm2	+	+	+
M68	Illtpm6	-	-	-
M69	Illtpm3	+	-	-
M70	Illtpm10	+	+	+
M71a	Illtpm9	+	-	-
M71b	Illtpm7	+	-	-
M72	Illppm1	+	+	+
M73	Illspm1	-	-	-
M74	Illdvm2	-	-	-
M75	Illdvm4	-	-	-
M76	Illdvm5	+	+	+
M77	Illpcm4	-	-	-
M78	Illpcm3	-	-	-
M79	Illdvm6	-	-	-
M80	Ilscm7?	-	-	-
M81	Illscm1	-	-	-
M82	Illscm4	-	-	-
M83	Illscm2	-	-	-
M84	Illdvm7	+	+	+
M85	Illscm6	+	+	+
M86	1	+	1	1
M87	1	+	1	1
Mx	1	+	1	1

Fig. 1. Orectochilus villosus, digital photographs, male habitus. A: dorsal view; B: ventral view; C: lateral view.

Fig. 2. Orectochilus villosus, SEM micrographs, male legs. A: fore leg; B: mid leg; C: hind
Fig. 2. Orectochilus villosus, SEM micrographs, male legs. A: fore leg; B: mid leg; C: hind

Fig. 3. Orectochilus villosus, line drawing, thoracic skeleton. A: dorsal view of mesothorax; B: dorsal view of metathorax; C: posterior view of prothorax; \mathbf{D} : lateral view of pterothorax.

Fig. 4. Orectochilus villosus, 3D-reconstruction, thoracic endoskeleton and muscles. Skeletal structures in blue lines rendered transparent to show muscles behind them. Skeletal structures labeled in blue, muscles in black. A-E: lateral view, dis and ph1/2 in pink; F: dorsal view, coxal muscles. Scale bars: upper 2.00 mm for A-E, lower 2.00 mm for \mathbf{F}.

Fig. 5. Orectochilus villosus, 3D-reconstruction, thoracic skeleton and muscles. Skeletal structures labeled in blue, muscles in black. A: lateral view, exoskeleton; B-D: lateral view, skeleton transparent.

Fig. 6. Schematic diagram for functional interpretation. The insect wing stroke can be divided into 4 distinct stages (Brodsky 1994): (1) depression and turning forward; (2) turning backward and beginning supination; (3) elevation and end of supination; (4) pronation. In Gyrinidae, the mid- and hind legs (leg2, 3) are laid close to the body during flight (Larsén 1966), and alternatively extended and flexed during swimming (Nachtigall 1961). Elytra omitted. Ai, Aii: M60 (IIIdlm1) initiates depression in generalized Coleoptera; Bi, Bii: either M69 (IIItpm3) or M72 (IIIppm1) initiate depression in Gyrinidae; C: both M70 (IIItpm10) and M79 (IIIdvm6) control supination in generalized Coleoptera; D: only M70 (IIItpm10) controls supination in Gyrinidae; \mathbf{E} : the large metacoxal muscles nearly form a single compact unit in the cricket Gryllus bimaculatus (redrawn from Brodsky 1994: fig. 7.13a(ii)); F: extremely large M84 (IIIdvm7) controls both hind wing elevation and hind leg backstroke.

