51 research outputs found

    ATP-gated P2X receptors in health and disease

    Get PDF
    Extracellular ATP is currently recognized as one of the most widely distributed neurotransmitters and neuromodulators in the peripheral and central nervous system. ATP-gated P2X receptors are expressed by neurons, glial and many other non-neuronal cells and represent an attractive target for therapeutic interventions. Diverse molecular and cellular mechanisms have been identified for P2X receptor functioning, including the ability to enlarge the size of the ion pore associated with the release of several key immune molecules. A major recent breakthrough was the determination of the X-ray crystal structures of zebrafish P2X4 receptor in ATP-bound and ATP-free states. The P2X receptor research field is rapidly growing, as evidenced by the almost 2000 papers published in the last 5 years. However, despite the fundamental signalling function of extracellular ATP in the nervous system, the widespread roles of P2X receptors have not been widely elucidated and presented in textbooks. In this volume of papers we aim to gather a collection of high quality papers, detailing the latest insights from the most accomplished international P2X receptor researchers. Importantly, basic research into P2X receptors has a strong translational impact and our collection of articles could be a valuable guide for the development of new pharmacological and biotechnological tools addressing the function of P2X receptors. Within this collection we plan to cover receptor structure-function relationships, receptors trafficking, to highlight the special properties of P2X receptors and their pharmacological profiles, and to describe the translational aspects of cellular ATP signaling in pain and in other neurological and vascular diseases

    Plasma membrane cholesterol as a regulator of human and rodent P2X7 receptor activation and sensitization.

    Get PDF
    P2X7 receptors are nonselective cation channels gated by high extracellular ATP, but with sustained activation, receptor sensitization occurs, whereby the intrinsic pore dilates, making the cell permeable to large organic cations, which eventually leads to cell death. P2X7 receptors associate with cholesterol-rich lipid rafts, but it is unclear how this affects the properties of the receptor channel. Here we show that pore-forming properties of human and rodent P2X7 receptors are sensitive to perturbations of cholesterol levels. Acute depletion of cholesterol with 5 mm methyl-β-cyclodextrin (MCD) caused a substantial increase in the rate of agonist-evoked pore formation, as measured by the uptake of ethidium dye, whereas cholesterol loading inhibited this process. Patch clamp analysis of P2X7 receptor currents carried by Na(+) and N-methyl-D-glucamine (NMDG(+)) showed enhanced activation and current facilitation following cholesterol depletion. This contrasts with the inhibitory effect of methyl-β-cyclodextrin reported for other P2X subtypes. Mutational analysis suggests the involvement of an N-terminal region and a proximal C-terminal region that comprises multiple cholesterol recognition amino acid consensus (CRAC) motifs, in the cholesterol sensitivity of channel gating. These results reveal cholesterol as a negative regulator of P2X7 receptor pore formation, protecting cells from P2X7-mediated cell death.This work was supported by the Biotechnology and Biological Sciences Research Council (BB/F001320/1), the David James Studentship, Department of Pharmacology, University of Cambridge and the Marshall Scholarship.This paper was originally published in The Journal of Biological Chemistry (Robinson LE, Shridar M, Smith P, Murrell-Lagnado RD, The Journal of Biological Chemistry 2014, 289, 46, 31983–31994, doi:10.1074/jbc.M114.574699

    P2X4 receptor function in the nervous system and current breakthroughs in pharmacology

    Get PDF
    ATP is a well-known extracellular signalling molecule and neurotransmitter known to activate purinergic P2X receptors. Information has been elucidated about the structure and gating of P2X channels following the determination of the crystal structure of P2X4 (zebrafish), however there is still much to discover regarding the role of this receptor in the central nervous system (CNS). In this review we provide an overview of what is known about P2X4 expression in the CNS and discuss evidence for pathophysiological roles in neuroinflammation and neuropathic pain. Recent advances in the development of pharmacological tools including selective antagonists (5-BDBD, PSB-12062, BX430) and positive modulators (ivermectin, avermectins, divalent cations) of P2X4 will be discussed

    Opposing Roles of Calcium and Intracellular ATP on Gating of the Purinergic P2X2 Receptor Channel

    No full text
    P2X2 receptors (P2X2R) exhibit a slow desensitization during the initial ATP application and a progressive, calcium-dependent increase in rates of desensitization during repetitive stimulation. This pattern is observed in whole-cell recordings from cells expressing recombinant and native P2X2R. However, desensitization is not observed in perforated-patched cells and in two-electrode voltage clamped oocytes. Addition of ATP, but not ATPγS or GTP, in the pipette solution also abolishes progressive desensitization, whereas intracellular injection of apyrase facilitates receptor desensitization. Experiments with injection of alkaline phosphatase or addition of staurosporine and ATP in the intracellular solution suggest a role for a phosphorylation-dephosphorylation in receptor desensitization. Mutation of residues that are potential phosphorylation sites identified a critical role of the S363 residue in the intracellular ATP action. These findings indicate that intracellular calcium and ATP have opposing effects on P2X2R gating: calcium allosterically facilitates receptor desensitization and ATP covalently prevents the action of calcium. Single cell measurements further revealed that intracellular calcium stays elevated after washout in P2X2R-expressing cells and the blockade of mitochondrial sodium/calcium exchanger lowers calcium concentrations during washout periods to basal levels, suggesting a role of mitochondria in this process. Therefore, the metabolic state of the cell can influence P2X2R gating

    Two open states of P2X receptor channels

    Get PDF
    The occupancy of the ATP binding sites of P2X receptor (P2XR) channels causes the rapid opening of a small cation-permeable pore, followed by a gradual dilation that renders the pore permeable to large organic cations. Electrophysiologically, this phenomenon was shown using whole-cell current recording on P2X2R-, P2X2/X5R-, P2X4R- and P2X7R-expressing cells that were bathed in N-methyl-D-glucamine-containing buffers in the presence and/or absence of small monovalent and divalent cations. The pore dilation of P2X4R and P2X7R caused a secondary current growth, whereas that of P2X2R showed a sustained kinetic coupling of dilation and desensitization, leading to receptor channel closure. The pore size of the P2X7R open and dilated states was estimated to be approximately 0.85 nm and greater than 1 nm, respectively. The P2XR pore dilation was also observed in intact cells by measurement of fluorescent dye uptake/release, application of polyethylene glycols of different sizes, and atomic force microscopy. However, pore dilation was not observed at the single channel level. Structural data describing the dilated state are not available, and the relevance of orthosteric and allosteric ligand interactions to pore dilation was not studied

    Ivermectin rescues the I<sub>max</sub> of low-functioning mutants.

    No full text
    <p>(A) Acute effect of 3 µM ivermectin (IVM) applied for 10 s (gray areas) during ongoing stimulation with 100 µM ATP for 30 s (horizontal bars) in cells expressing the WT, the DF mutants (R203A, N204A, I205A, and L214A), or the LF mutants (D280A, R282A, P290A and N293A). Recordings are examples of traces similar to 3–5 traces per mutant and 30 per WT receptor. (B) Summary data showing the potentiating effect of IVM preapplication (for 4–6 min) on I<sub>max</sub> in WT and alanine mutant receptors. The I<sub>max</sub> values were derived from measurements taken in the absence (open bars) or in the presence (filled bars) of IVM. Values are presented as the mean ± SEM from 5–8 measurements per mutant and 15 measurements per WT. IVM treatment rescued the I<sub>max</sub> of all low-functioning receptors, except in the case of N293A, which is an ATP binding mutant. The statistical significance was determined by an ANOVA comparing the WT I<sub>max</sub> and the I<sub>max</sub> of mutant receptors in the presence of IVM. **, p<0.01.</p

    Multiple roles of the extracellular vestibule amino acid residues in the function of the rat P2X4 receptor.

    Get PDF
    The binding of ATP to trimeric P2X receptors (P2XR) causes an enlargement of the receptor extracellular vestibule, leading to opening of the cation-selective transmembrane pore, but specific roles of vestibule amino acid residues in receptor activation have not been evaluated systematically. In this study, alanine or cysteine scanning mutagenesis of V47-V61 and F324-N338 sequences of rat P2X4R revealed that V49, Y54, Q55, F324, and G325 mutants were poorly responsive to ATP and trafficking was only affected by the V49 mutation. The Y54F and Y54W mutations, but not the Y54L mutation, rescued receptor function, suggesting that an aromatic residue is important at this position. Furthermore, the Y54A and Y54C receptor function was partially rescued by ivermectin, a positive allosteric modulator of P2X4R, suggesting a rightward shift in the potency of ATP to activate P2X4R. The Q55T, Q55N, Q55E, and Q55K mutations resulted in non-responsive receptors and only the Q55E mutant was ivermectin-sensitive. The F324L, F324Y, and F324W mutations also rescued receptor function partially or completely, ivermectin action on channel gating was preserved in all mutants, and changes in ATP responsiveness correlated with the hydrophobicity and side chain volume of the substituent. The G325P mutant had a normal response to ATP, suggesting that G325 is a flexible hinge. A topological analysis revealed that the G325 and F324 residues disrupt a β-sheet upon ATP binding. These results indicate multiple roles of the extracellular vestibule amino acid residues in the P2X4R function: the V49 residue is important for receptor trafficking to plasma membrane, the Y54 and Q55 residues play a critical role in channel gating and the F324 and G325 residues are critical for vestibule widening
    corecore