39,374 research outputs found

    Characterizing the Cool KOIs. VI. H- and K-band Spectra of Kepler M Dwarf Planet-Candidate Hosts

    Get PDF
    We present H- and K-band spectra for late-type Kepler Objects of Interest (the "Cool KOIs"): low-mass stars with transiting-planet candidates discovered by NASA's Kepler Mission that are listed on the NASA Exoplanet Archive. We acquired spectra of 103 Cool KOIs and used the indices and calibrations of Rojas-Ayala et al. to determine their spectral types, stellar effective temperatures and metallicities, significantly augmenting previously published values. We interpolate our measured effective temperatures and metallicities onto evolutionary isochrones to determine stellar masses, radii, luminosities and distances, assuming the stars have settled onto the main-sequence. As a choice of isochrones, we use a new suite of Dartmouth predictions that reliably include mid-to-late M dwarf stars. We identify five M4V stars: KOI-961 (confirmed as Kepler 42), KOI-2704, KOI-2842, KOI-4290, and the secondary component to visual binary KOI-1725, which we call KOI-1725 B. We also identify a peculiar star, KOI-3497, which has a Na and Ca lines consistent with a dwarf star but CO lines consistent with a giant. Visible-wavelength adaptive optics imaging reveals two objects within a 1 arc second diameter; however, the objects' colors are peculiar. The spectra and properties presented in this paper serve as a resource for prioritizing follow-up observations and planet validation efforts for the Cool KOIs, and are all available for download online using the "data behind the figure" feature.Comment: Accepted for publication in the Astrophysical Journal Supplement Series (ApJS). Data and table are available in the sourc

    Characterizing the Cool Kepler Objects of Interest. New Effective Temperatures, Metallicities, Masses and Radii of Low-Mass Kepler Planet-Candidate Host Stars

    Get PDF
    We report stellar parameters for late-K and M-type planet-candidate host stars announced by the Kepler Mission. We obtained medium-resolution, K-band spectra of 84 cool (Teff < 4400 K) Kepler Objects of Interest (KOIs) from Borucki et al. We identified one object as a giant (KOI 977); for the remaining dwarfs, we measured effective temperatures (Teff) and metallicities ([M/H]) using the K-band spectral indices of Rojas-Ayala et al. We determine the masses and radii of the cool KOIs by interpolation onto the Dartmouth evolutionary isochrones. The resultant stellar radii are significantly less than the values reported in the Kepler Input Catalogue and, by construction, correlate better with Teff. Applying the published KOI transit parameters to our stellar radius measurements, we report new physical radii for the planet candidates. Recalculating the equilibrium temperatures of the planet-candidates assuming Earth's albedo and re-radiation fraction, we find that 3 of the planet-candidates are terrestrial-sized with orbital semi-major axes that lie within the habitable zones of their host stars (KOI 463.01, KOI 812.03 and KOI 854.01). The stellar parameters presented in this letter serve as a resource for prioritization of future follow-up efforts to validate and characterize the cool KOI planet candidates.Comment: Published in ApJ Letters. We now interpolate measured Teff and [M/H] onto Dartmouth isochrones (originally used Padova in v1), and include method verification on nearby stars (see new Figure 3). Machine readable table is available in the source cod

    Portraying the hosts: Stellar science from planet searches

    Full text link
    Information on the full session can be found on this website: https://sites.google.com/site/portrayingthehostscs18/We present a compendium of the splinter session on stellar science from planet searches that was organized as part of the Cool Stars 18 conference. Seven speakers discussed techniques to infer stellar information from radial velocity, transit and microlensing data, as well as new instrumentation and missions designed for planet searches that will provide useful for the study of the cool stars

    Metallicity of M dwarfs IV. A high-precision [Fe/H] and Teff technique from high-resolution optical spectra for M dwarfs

    Full text link
    Aims. In this work we develop a technique to obtain high precision determinations of both metallicity and effective temperature of M dwarfs in the optical. Methods. A new method is presented that makes use of the information of 4104 lines in the 530-690 nm spectral region. It consists in the measurement of pseudo equivalent widths and their correlation with established scales of [Fe/H] and TeffT_{eff}. Results. Our technique achieves a rmsrms of 0.08±\pm0.01 for [Fe/H], 91±\pm13 K for TeffT_{eff}, and is valid in the (-0.85, 0.26 dex), (2800, 4100 K), and (M0.0, M5.0) intervals for [Fe/H], TeffT_{eff} and spectral type respectively. We also calculated the RMSEV_{V} which estimates uncertainties of the order of 0.12 dex for the metallicity and of 293 K for the effective temperature. The technique has an activity limit and should only be used for stars with logLHα/Lbol<4.0\log{L_{H_{\alpha}}/L_{bol}} < -4.0. Our method is available online at \url{http://www.astro.up.pt/resources/mcal}.Comment: Accepted in Astronomy and Astrophysics. Updated one important reference in the introduction. Some typos correcte

    M dwarfs in the b201 tile of the VVV survey: Colour-based Selection, Spectral Types and Light Curves

    Full text link
    The intrinsically faint M dwarfs are the most numerous stars in the Galaxy, have main-sequence lifetimes longer than the Hubble time, and host some of the most interesting planetary systems known to date. Their identification and classification throughout the Galaxy is crucial to unravel the processes involved in the formation of planets, stars and the Milky Way. The ESO Public Survey VVV is a deep near-IR survey mapping the Galactic bulge and southern plane. The VVV b201 tile, located in the border of the bulge, was specifically selected for the characterisation of M dwarfs. We used VISTA photometry to identify M dwarfs in the VVV b201 tile, to estimate their subtypes, and to search for transit-like light curves from the first 26 epochs of the survey. UKIDSS photometry from SDSS spectroscopically identified M dwarfs was used to calculate their expected colours in the YJHKsYJHK_s VISTA system. A colour-based spectral subtype calibration was computed. Possible giants were identified by a (JKs,HJ)(J-K_s, H_{J}) reduced proper motion diagram. The light curves of 12.8<KsK_s<15.8 colour-selected M dwarfs were inspected for signals consistent with transiting objects. We identified 23,345 objects in VVV b201 with colours consistent with M dwarfs. We provided their spectral types and photometric distances, up to \sim 300 pc for M9s and \sim 1.2 kpc for M4s, from photometry. In the range 12<KsK_s<16, we identified 753 stars as possible giants out of 9,232 M dwarf candidates. While only the first 26 epochs of VVV were available, and 1 epoch was excluded, we were already able to identify transit-like signals in the light curves of 95 M dwarfs and of 12 possible giants. Thanks to its deeper photometry (\sim4 magnitudes deeper than 2MASS), the VVV survey will be a major contributor to the discovery and study of M dwarfs and possible companions towards the center of the Milky Way.Comment: 11 pages, 4 figures. Accepted for publication in Catalogs and data of Astronomy and Astrophysic

    The NASA-UC-UH Eta-Earth Program: IV. A Low-mass Planet Orbiting an M Dwarf 3.6 PC from Earth

    Get PDF
    We report the discovery of a low-mass planet orbiting Gl 15 A based on radial velocities from the Eta-Earth Survey using HIRES at Keck Observatory. Gl 15 Ab is a planet with minimum mass Msini = 5.35 ±\pm 0.75 M_\oplus, orbital period P = 11.4433 ±\pm 0.0016 days, and an orbit that is consistent with circular. We characterize the host star using a variety of techniques. Photometric observations at Fairborn Observatory show no evidence for rotational modulation of spots at the orbital period to a limit of ~0.1 mmag, thus supporting the existence of the planet. We detect a second RV signal with a period of 44 days that we attribute to rotational modulation of stellar surface features, as confirmed by optical photometry and the Ca II H & K activity indicator. Using infrared spectroscopy from Palomar-TripleSpec, we measure an M2 V spectral type and a sub-solar metallicity ([M/H] = -0.22, [Fe/H] = -0.32). We measure a stellar radius of 0.3863 ±\pm 0.0021 R_\odot based on interferometry from CHARA.Comment: ApJ accepted, 11 pages, 8 figures, 3 table

    Prospecting in ultracool dwarfs : Measuring the metallicities of mid- and late-m dwarfs

    Get PDF
    © 2014. The American Astronomical Society. All rights reserved.Metallicity is a fundamental parameter that contributes to the physical characteristics of a star. The low temperatures and complex molecules present in M dwarf atmospheres make it difficult to measure their metallicities using techniques that have been commonly used for Sun-like stars. Although there has been significant progress in developing empirical methods to measure M dwarf metallicities over the last few years, these techniques have been developed primarily for early- to mid-M dwarfs. We present a method to measure the metallicity of mid- to late-M dwarfs from moderate resolution (R ∼ 2000) K-band (≃ 2.2 μm) spectra. We calibrate our formula using 44 wide binaries containing an F, G, K, or early-M primary of known metallicity and a mid- to late-M dwarf companion. We show that similar features and techniques used for early-M dwarfs are still effective for late-M dwarfs. Our revised calibration is accurate to ∼0.07 dex for M4.5-M9.5 dwarfs with -0.58 <[Fe/H] <+0.56 and shows no systematic trends with spectral type, metallicity, or the method used to determine the primary star metallicity. We show that our method gives consistent metallicities for the components of M+M wide binaries. We verify that our new formula works for unresolved binaries by combining spectra of single stars. Lastly, we show that our calibration gives consistent metallicities with the Mann et al. study for overlapping (M4-M5) stars, establishing that the two calibrations can be used in combination to determine metallicities across the entire M dwarf sequence.Peer reviewe

    M Dwarf Metallicities and Giant Planet Occurrence: Ironing Out Uncertainties and Systematics

    Get PDF
    Comparisons between the planet populations around solar-type stars and those orbiting M dwarfs shed light on the possible dependence of planet formation and evolution on stellar mass. However, such analyses must control for other factors, i.e. metallicity, a stellar parameter which strongly influences the occurrence of gas giant planets. We obtained infrared spectra of 121 M dwarfs stars monitored by the California Planet Search (CPS) and determined metallicities with an accuracy of 0.08 dex. The mean and standard deviation of the sample is -0.05 and 0.20 dex, respectively. We parameterized the metallicity dependence of the occurrence of giant planets on orbits with period less than 2 yr around solar-type stars and applied this to our M dwarf sample to estimate the expected number of giant planets. The number of detected planets (3) is lower than the predicted number (6.4) but the difference is not very significant (12% probability of finding as many or fewer planets). The three M dwarf planet hosts are not especially metal rich and the most likely value of the power-law index relating planet occurrence to metallicity is 1.06 dex per dex for M dwarfs compared to 1.80 for solar-type stars; this difference, however, is comparable to uncertainties. Giant planet occurrence around both types of stars allows, but does not necessarily require, mass dependence of 1\sim 1 dex per dex. The actual planet-mass-metallicity relation may be complex and elucidating it will require larger surveys like those to be conducted by ground-based infrared spectrographs and the Gaia space astrometry mission.Comment: Accepted to The Astrophysical Journa
    corecore