67 research outputs found
Recommended from our members
Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios
The Mediterranean climate is expected to become warmer and drier during the twenty-first century. Mediterranean Sea response to climate change could be modulated by the choice of the socio-economic scenario as well as the choice of the boundary conditions mainly the Atlantic hydrography, the river runoff and the atmospheric fluxes. To assess and quantify the sensitivity of the Mediterranean Sea to the twenty-first century climate change, a set of numerical experiments was carried out with the regional ocean model NEMOMED8 set up for the Mediterranean Sea. The model is forced by airâsea fluxes derived from the regional climate model ARPEGE-Climate at a 50-km horizontal resolution. Historical simulations representing the climate of the period 1961â2000 were run to obtain a reference state. From this baseline, various sensitivity experiments were performed for the period 2001â2099, following different socio-economic scenarios based on the Special Report on Emissions Scenarios. For the A2 scenario, the main three boundary forcings (river runoff, near-Atlantic water hydrography and airâsea fluxes) were changed one by one to better identify the role of each forcing in the way the ocean responds to climate change. In two additional simulations (A1B, B1), the scenario is changed, allowing to quantify the socio-economic uncertainty. Our 6-member scenario simulations display a warming and saltening of the Mediterranean. For the 2070â2099 period compared to 1961â1990, the sea surface temperature anomalies range from +1.73 to +2.97 °C and the SSS anomalies spread from +0.48 to +0.89. In most of the cases, we found that the future Mediterranean thermohaline circulation (MTHC) tends to reach a situation similar to the eastern Mediterranean Transient. However, this response is varying depending on the chosen boundary conditions and socio-economic scenarios. Our numerical experiments suggest that the choice of the near-Atlantic surface water evolution, which is very uncertain in General Circulation Models, has the largest impact on the evolution of the Mediterranean water masses, followed by the choice of the socio-economic scenario. The choice of river runoff and atmospheric forcing both have a smaller impact. The state of the MTHC during the historical period is found to have a large influence on the transfer of surface anomalies toward depth. Besides, subsurface currents are substantially modified in the Ionian Sea and the Balearic region. Finally, the response of thermosteric sea level ranges from +34 to +49 cm (2070â2099 vs. 1961â1990), mainly depending on the Atlantic forcing
Time-resolved thermal lens measurements of the thermo-optical properties of glasses at low temperature down to 20 K
In this work the time resolved thermal lens spectrometry was applied to measure the absolute values of the thermo-optical properties of low silica calcium aluminosilicate and soda lime glasses at low temperatures, in the range between 20 and 300 K. The thermal relaxation calorimetry was used as a complementary technique to determine the specific heat. The results showed a marked decrease of the thermal diffusivity with the temperature rise, with a dependence similar to that of the mean free path (similar to T-1) in the interval between 20 and 70 K, while in the range between 70 and 300 K the dependence was T-(0.33 +/- 0.02). The marked variation of the temperature coefficient of the optical path length change with the temperature rise was attributed to the increase in the coefficient of the electronic polarizability. The results also showed that for the aluminosilicate glass the excess in the specific heat correlated to the so-called boson peak occurred at about 17 K, higher than that of soda lime, which occurs at about 12 K. In conclusion, our results showed the ability of the time resolved thermal lens to determine the thermo-optical properties of glasses at low temperatures, bringing possibilities for experiments in a wide range of optical materials.712
Asynchronous Antarctic and Greenland ice-volume contributions to the last interglacial sea-level highstand
The last interglacial (LIG; ~130 to ~118 thousand years ago, ka) was the last time global sea level rose well above the present level. Greenland Ice Sheet (GrIS) contributions were insufficient to explain the highstand, so that substantial Antarctic Ice Sheet (AIS) reduction is implied. However, the nature and drivers of GrIS and AIS reductions remain enigmatic, even though they may be critical for understanding future sea-level rise. Here we complement existing records with new data, and reveal that the LIG contained an AIS-derived highstand from ~129.5 to ~125 ka, a lowstand centred on 125â124 ka, and joint AIS + GrIS contributions from ~123.5 to ~118 ka. Moreover, a dual substructure within the first highstand suggests temporal variability in the AIS contributions. Implied rates of sea-level rise are high (up to several meters per century; m câ1), and lend credibility to high rates inferred by ice modelling under certain ice-shelf instability parameterisations
The Red Sea, Coastal Landscapes, and Hominin Dispersals
This chapter provides a critical assessment of environment, landscape and resources in the Red Sea region over the past five million years in relation to archaeological evidence of hominin settlement, and of current hypotheses about the role of the region as a pathway or obstacle to population dispersals between Africa and Asia and the possible significance of coastal colonization. The discussion assesses the impact of factors such as topography and the distribution of resources on land and on the seacoast, taking account of geographical variation and changes in geology, sea levels and palaeoclimate. The merits of northern and southern routes of movement at either end of the Red Sea are compared. All the evidence indicates that there has been no land connection at the southern end since the beginning of the Pliocene period, but that short sea crossings would have been possible at lowest sea-level stands with little or no technical aids. More important than the possibilities of crossing the southern channel is the nature of the resources available in the adjacent coastal zones. There were many climatic episodes wetter than today, and during these periods water draining from the Arabian escarpment provided productive conditions for large mammals and human populations in coastal regions and eastwards into the desert. During drier episodes the coastal region would have provided important refugia both in upland areas and on the emerged shelves exposed by lowered sea level, especially in the southern sector and on both sides of the Red Sea. Marine resources may have offered an added advantage in coastal areas, but evidence for their exploitation is very limited, and their role has been over-exaggerated in hypotheses of coastal colonization
Cognitive and cognitive-motor interventions affecting physical functioning: A systematic review
Background
Several types of cognitive or combined cognitive-motor intervention types that might influence physical functions have been proposed in the past: training of dual-tasking abilities, and improving cognitive function through behavioral interventions or the use of computer games. The objective of this systematic review was to examine the literature regarding the use of cognitive and cognitive-motor interventions to improve physical functioning in older adults or people with neurological impairments that are similar to cognitive impairments seen in aging. The aim was to identify potentially promising methods that might be used in future intervention type studies for older adults.
Methods
A systematic search was conducted for the Medline/Premedline, PsycINFO, CINAHL and EMBASE databases. The search was focused on older adults over the age of 65. To increase the number of articles for review, we also included those discussing adult patients with neurological impairments due to trauma, as these cognitive impairments are similar to those seen in the aging population. The search was restricted to English, German and French language literature without any limitation of publication date or restriction by study design. Cognitive or cognitive-motor interventions were defined as dual-tasking, virtual reality exercise, cognitive exercise, or a combination of these.
Results
28 articles met our inclusion criteria. Three articles used an isolated cognitive rehabilitation intervention, seven articles used a dual-task intervention and 19 applied a computerized intervention. There is evidence to suggest that cognitive or motor-cognitive methods positively affects physical functioning, such as postural control, walking abilities and general functions of the upper and lower extremities, respectively. The majority of the included studies resulted in improvements of the assessed functional outcome measures.
Conclusions
The current evidence on the effectiveness of cognitive or motor-cognitive interventions to improve physical functioning in older adults or people with neurological impairments is limited. The heterogeneity of the studies published so far does not allow defining the training methodology with the greatest effectiveness. This review nevertheless provides important foundational information in order to encourage further development of novel cognitive or cognitive-motor interventions, preferably with a randomized control design. Future research that aims to examine the relation between improvements in cognitive skills and the translation to better performance on selected physical tasks should explicitly take the relation between the cognitive and physical skills into account.ISSN:1471-231
Acupuncture and chiropractic care for chronic pain in an integrated health plan: a mixed methods study
<p>Abstract</p> <p>Background</p> <p>Substantial recent research examines the efficacy of many types of complementary and alternative (CAM) therapies. However, outcomes associated with the "real-world" use of CAM has been largely overlooked, despite calls for CAM therapies to be studied in the manner in which they are practiced. Americans seek CAM treatments far more often for chronic musculoskeletal pain (CMP) than for any other condition. Among CAM treatments for CMP, acupuncture and chiropractic (A/C) care are among those with the highest acceptance by physician groups and the best evidence to support their use. Further, recent alarming increases in delivery of opioid treatment and surgical interventions for chronic pain--despite their high costs, potential adverse effects, and modest efficacy--suggests the need to evaluate real world outcomes associated with promising non-pharmacological/non-surgical CAM treatments for CMP, which are often well accepted by patients and increasingly used in the community.</p> <p>Methods/Design</p> <p>This multi-phase, mixed methods study will: (1) conduct a retrospective study using information from electronic medical records (EMRs) of a large HMO to identify unique clusters of patients with CMP (e.g., those with differing demographics, histories of pain condition, use of allopathic and CAM health services, and comorbidity profiles) that may be associated with different propensities for A/C utilization and/or differential outcomes associated with such care; (2) use qualitative interviews to explore allopathic providers' recommendations for A/C and patients' decisions to pursue and retain CAM care; and (3) prospectively evaluate health services/costs and broader clinical and functional outcomes associated with the receipt of A/C relative to carefully matched comparison participants receiving traditional CMP services. Sensitivity analyses will compare methods relying solely on EMR-derived data versus analyses supplementing EMR data with conventionally collected patient and clinician data.</p> <p>Discussion</p> <p>Successful completion of these aggregate aims will provide an evaluation of outcomes associated with the real-world use of A/C services. The trio of retrospective, qualitative, and prospective study will also provide a clearer understanding of the decision-making processes behind the use of A/C for CMP and a transportable methodology that can be applied to other health care settings, CAM treatments, and clinical populations.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01345409">NCT01345409</a></p
What Happened to Gray Whales during the Pleistocene? The Ecological Impact of Sea-Level Change on Benthic Feeding Areas in the North Pacific Ocean
Gray whales (Eschrichtius robustus) undertake long migrations, from Baja California to Alaska, to feed on seasonally productive benthos of the Bering and Chukchi seas. The invertebrates that form their primary prey are restricted to shallow water environments, but global sea-level changes during the Pleistocene eliminated or reduced this critical habitat multiple times. Because the fossil record of gray whales is coincident with the onset of Northern Hemisphere glaciation, gray whales survived these massive changes to their feeding habitat, but it is unclear how.We reconstructed gray whale carrying capacity fluctuations during the past 120,000 years by quantifying gray whale feeding habitat availability using bathymetric data for the North Pacific Ocean, constrained by their maximum diving depth. We calculated carrying capacity based on modern estimates of metabolic demand, prey availability, and feeding duration; we also constrained our estimates to reflect current population size and account for glaciated and non-glaciated areas in the North Pacific. Our results show that key feeding areas eliminated by sea-level lowstands were not replaced by commensurate areas. Our reconstructions show that such reductions affected carrying capacity, and harmonic means of these fluctuations do not differ dramatically from genetic estimates of carrying capacity.Assuming current carrying capacity estimates, Pleistocene glacial maxima may have created multiple, weak genetic bottlenecks, although the current temporal resolution of genetic datasets does not test for such signals. Our results do not, however, falsify molecular estimates of pre-whaling population size because those abundances would have been sufficient to survive the loss of major benthic feeding areas (i.e., the majority of the Bering Shelf) during glacial maxima. We propose that gray whales survived the disappearance of their primary feeding ground by employing generalist filter-feeding modes, similar to the resident gray whales found between northern Washington State and Vancouver Island
Mediterranean winter rainfall in phase with African monsoons during the past 1.36 million years
Mediterranean climates are characterized by strong seasonal contrasts between dry summers and wet winters. Changes in winter rainfall are critical for regional socioeconomic development, but are difficult to simulate accurately1 and reconstruct on Quaternary timescales. This is partly because regional hydroclimate records that cover multiple glacialâinterglacial cycles2,3 with different orbital geometries, global ice volume and atmospheric greenhouse gas concentrations are scarce. Moreover, the underlying mechanisms of change and their persistence remain unexplored. Here we show that, over the past 1.36 million years, wet winters in the northcentral Mediterranean tend to occur with high contrasts in local, seasonal insolation and a vigorous African summer monsoon. Our proxy time series from Lake Ohrid on the Balkan Peninsula, together with a 784,000-year transient climate model hindcast, suggest that increased sea surface temperatures amplify local cyclone development and refuel North Atlantic low-pressure systems that enter the Mediterranean during phases of low continental ice volume and high concentrations of atmospheric greenhouse gases. A comparison with modern reanalysis data shows that current drivers of the amount of rainfall in the Mediterranean share some similarities to those that drive the reconstructed increases in precipitation. Our data cover multiple insolation maxima and are therefore an important benchmark for testing climate model performance
- âŠ