33 research outputs found

    Interaction of Cooled Ion Beams with Internal Fiber Targets

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Study of the production mechanism of the eta meson by means of analysing power measurements

    Full text link
    Information about the production mechanism of the eta meson in proton-proton collisions can be inferred by confronting the experimental studies on the analysing power for the p(pol)p --> pp eta reaction with the theoretical predictions of this observable. Results show that the predictions of pure pseudoscalar- or vector meson exchange model are insufficient to describe the analysing powers.Comment: 4 pages, 4 figures, Presented at MESON 2006: 9th International Workshop on Meson Production, Properties and Interactions, Cracow, Poland, 9-13 Jun 200

    A Precision Measurement of pp Elastic Scattering Cross Sections at Intermediate Energies

    Get PDF
    We have measured differential cross sections for \pp elastic scattering with internal fiber targets in the recirculating beam of the proton synchrotron COSY. Measurements were made continuously during acceleration for projectile kinetic energies between 0.23 and 2.59 GeV in the angular range 30θc.m.9030 \leq \theta_{c.m.} \leq 90 deg. Details of the apparatus and the data analysis are given and the resulting excitation functions and angular distributions presented. The precision of each data point is typically better than 4%, and a relative normalization uncertainty of only 2.5% within an excitation function has been reached. The impact on phase shift analysis as well as upper bounds on possible resonant contributions in lower partial waves are discussed.Comment: 23 pages 29 figure

    The cross section minima in elastic Nd scattering: a ``smoking gun'' for three nucleon force effects

    Get PDF
    Neutron-deuteron elastic scattering cross sections are calculated at different energies using modern nucleon-nucleon interactions and the Tucson-Melbourne three-nucleon force adjusted to the triton binding energy. Predictions based on NN forces only underestimate nucleon-deuteron data in the minima at higher energies starting around 60 MeV. Adding the three-nucleon forces fills up those minima and reduces the discrepancies significantly.Comment: 11 pages, 6 figure

    Spin‐Flipping Polarized Deuterons At COSY

    Full text link
    We recently stored a 1.85 GeV/c vertically polarized deuteron beam in the COSY Ring in Jülich; we then spin‐flipped it by ramping a new air‐core rf dipole’s frequency through an rf‐induced spin resonance to manipulate the polarization direction of the deuteron beam. We first experimentally determined the resonance’s frequency and set the dipole’s rf voltage to its maximum; then we varied its frequency ramp time and frequency range. We used the EDDA detector to measure the vector and tensor polarization asymmetries. We have not yet extracted the deuteron’s tensor polarization spin‐flip parameters from the measured data, since our short run did not provide adequate tensor analyzing‐power data at 1.85 GeV/c. However, with a 100 Hz frequency ramp and our longest ramp time of 400 s, the deuterons’ vector polarization spin‐flip efficiency was 48±1%. © 2004 American Institute of PhysicsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87592/2/763_1.pd

    Cooler Target Development

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Close-to-threshold Meson Production in Hadronic Interactions

    Full text link
    Studies of meson production at threshold in the hadron--hadron interaction began in the fifties when sufficient energies of accelerated protons were available. A strong interdependence between developments in accelerator physics, detector performance and theoretical understanding led to a unique vivid field of physics. Early experiments performed with bubble chambers revealed already typical ingredients of threshold studies, which were superseded by more complete meson production investigations at the nucleon beam facilities TRIUMF, LAMPF, PSI, LEAR and SATURNE. Currently, with the advent of the new cooler rings as IUCF, CELSIUS and COSY the field is entering a new domain of precision and the next step of further progress. The analysis of this new data in the short range limit permits a more fundamental consideration and a quantitative comparison of the production processes for different mesons in the few--body final states. The interpretation of the data take advantage of the fact that production reactions close-to-threshold are characterized by only a few degrees of freedom between a well defined combination of initial and exit channels. Deviations from predictions of phase-space controlled one-meson-exchange models are indications of new and exciting physics. Precision data on differential cross sections, isospin and spin observables -- partly but by no means adequately available -- are presently turning up on the horizon. There is work for the next years and excitement of the physics expected. Here we try to give a brief and at the same time comprehensive overview of this field of hadronic threshold production studies.Comment: 100 pages, Review article to be published in Prog. Part. Nucl. Phys. Vol. 49, issue 1 (2002

    A new form of three-body Faddeev equations in the continuum

    Full text link
    We propose a novel approach to solve the three-nucleon (3N) Faddeev equation which avoids the complicated singularity pattern going with the moving logarithmic singularities of the standard approach. In this new approach the treatment of the 3N Faddeev equation becomes essentially as simple as the treatment of the two-body Lippmann-Schwinger equation. Very good agreement of the new and old approaches in the application to nucleon-deuteron elastic scattering and the breakup reaction is found.Comment: 20 pages, 3 eps figure
    corecore