248 research outputs found

    The contribution of small punch testing towards the development of materials for aero-engine applications

    Get PDF
    This paper, invited for presentation at the 33rd Meeting of the Spanish Group on Fracture and Structural Integrity, March 2016 in San Sebastian, Spain, reviews the recent work carried out in the authors’ laboratory, addressing the elucidation of tensile and creep characteristics of materials for aero engine components. Two specific applications of the Small Punch (SP) test assessment technology were identified, the first of these takes on board the unique potential of the SP test for testing small quantities of materials which are either in development or through their directional structure cannot easily be produced in quantities which would allow conventional mechanical testing. This goal also required the development and procurement of new SP test facilities capable of operation up to 1150 °C. The examples given in this paper are TiAl intermetallic alloys and nickel based single crystals, all studied utilising the Code of Practice for SP Creep Testing. The second application illustrates the use of SP testing to assess both the tensile and creep properties of additive layer manufactured (ALM) alloys such as IN718 and Ti-6Al-4V using the Code of Practice for SP Tensile and Fracture Testing. Due to the unavailability of sufficient material to facilitate conventional testing for comparison of materials property data, SP testing is unable to provide absolute data for all of these applications, nevertheless the ranking capabilities of SP testing are demonstrably proven

    Canonical forms for complex matrix congruence and *congruence

    Full text link
    Canonical forms for congruence and *congruence of square complex matrices were given by Horn and Sergeichuk in [Linear Algebra Appl. 389 (2004) 347-353], based on Sergeichuk's paper [Math. USSR, Izvestiya 31 (3) (1988) 481-501], which employed the theory of representations of quivers with involution. We use standard methods of matrix analysis to prove directly that these forms are canonical. Our proof provides explicit algorithms to compute all the blocks and parameters in the canonical forms. We use these forms to derive canonical pairs for simultaneous congruence of pairs of complex symmetric and skew-symmetric matrices as well as canonical forms for simultaneous *congruence of pairs of complex Hermitian matrices.Comment: 31 page

    Application of the small punch test to determine the fatigue properties of additive manufactured aerospace alloys

    Get PDF
    Additive layer manufacturing (ALM) processes are becoming increasingly prevalent in the aerospace industry as design engineers look to profit from the numerous advantages that these advanced techniques can offer. However, given the safety critical nature and arduous operating conditions to which these components will be exposed to whilst in service, it is essential that the mechanical properties of such structures are fully understood. Transient microstructures are a typical characteristic of ALM components and resulting from the thermal cycles that occur during the build operation. Those microstructures make any mechanical assessment an involved procedure when assessing the process variables for any given parameter set. A useful mechanical test technique is small-scale testing, in particular, the small punch (SP) test. SP testing is capable of localised sampling of a larger scale component and presents an attractive option to mechanically assess complex parts with representative geometries, that would not be possible using more conventional uniaxial test approaches. This paper will present the recent development of a small-scale testing methodology capable of inducing fatigue damage and a series of novel tests performed on different variants of Ti-6Al-4V

    Rethinking organoid technology through bioengineering

    Get PDF
    In recent years considerable progress has been made in the development of faithful procedures for the differentiation of human pluripotent stem cells (hPSCs). An important step in this direction has also been the derivation of organoids. This technology generally relies on traditional three-dimensional culture techniques that exploit cell-autonomous self-organization responses of hPSCs with minimal control over the external inputs supplied to the system. The convergence of stem cell biology and bioengineering offers the possibility to provide these stimuli in a controlled fashion, resulting in the development of naturally inspired approaches to overcome major limitations of this nascent technology. Based on the current developments, we emphasize the achievements and ongoing challenges of bringing together hPSC organoid differentiation, bioengineering and ethics. This Review underlines the need for providing engineering solutions to gain control of self-organization and functionality of hPSC-derived organoids. We expect that this knowledge will guide the community to generate higher-grade hPSC-derived organoids for further applications in developmental biology, drug screening, disease modelling and personalized medicine

    The role of the C-terminal lysine of S100P in S100P-induced cell migration and metastasis

    Get PDF
    S100P protein is a potent inducer of metastasis in a model system, and its presence in cancer cells of patients is strongly associated with their reduced survival times. A well-established Furth Wistar rat metastasis model system, methods for measuring cell migration, and specific inhibitors were used to study pathways of motility-driven metastasis. Cells expressing C-terminal mutant S100P proteins display markedly-reduced S100P-driven metastasis in vivo and cell migration in vitro. These cells fail to display the low focal adhesion numbers observed in cells expressing wild-type S100P, and the mutant S100P proteins exhibit reduced biochemical interaction with non-muscle myosin heavy chain isoform IIA in vitro. Extracellular inhibitors of the S100P-dependent plasminogen activation pathway reduce, but only in part, wild-type S100P-dependent cell migration; they are without effect on S100P-negative cells or cells expressing C-terminal mutant S100P proteins and have no effect on the numbers of focal adhesions. Recombinant wild-type S100P protein, added extracellularly to S100P-negative cells, stimulates cell migration, which is abolished by these inhibitors. The results identify at least two S100P-dependent pathways of migration, one cell surface and the other intracellularly-linked, and identify its C-terminal lysine as a target for inhibiting multiple migration-promoting activities of S100P protein and S100P-driven metastasis

    Blazars in the Fermi Era: The OVRO 40-m Telescope Monitoring Program

    Get PDF
    The Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope provides an unprecedented opportunity to study gamma-ray blazars. To capitalize on this opportunity, beginning in late 2007, about a year before the start of LAT science operations, we began a large-scale, fast-cadence 15 GHz radio monitoring program with the 40-m telescope at the Owens Valley Radio Observatory (OVRO). This program began with the 1158 northern (declination>-20 deg) sources from the Candidate Gamma-ray Blazar Survey (CGRaBS) and now encompasses over 1500 sources, each observed twice per week with a ~4 mJy (minimum) and 3% (typical) uncertainty. Here, we describe this monitoring program and our methods, and present radio light curves from the first two years (2008 and 2009). As a first application, we combine these data with a novel measure of light curve variability amplitude, the intrinsic modulation index, through a likelihood analysis to examine the variability properties of subpopulations of our sample. We demonstrate that, with high significance (7-sigma), gamma-ray-loud blazars detected by the LAT during its first 11 months of operation vary with about a factor of two greater amplitude than do the gamma-ray-quiet blazars in our sample. We also find a significant (3-sigma) difference between variability amplitude in BL Lacertae objects and flat-spectrum radio quasars (FSRQs), with the former exhibiting larger variability amplitudes. Finally, low-redshift (z<1) FSRQs are found to vary more strongly than high-redshift FSRQs, with 3-sigma significance. These findings represent an important step toward understanding why some blazars emit gamma-rays while others, with apparently similar properties, remain silent.Comment: 23 pages, 24 figures. Submitted to ApJ

    Enhancing easy-plane anisotropy in bespoke Ni(II) quantum magnets

    Get PDF
    We examine the crystal structures and magnetic properties of several S = 1 Ni(II) coordination compounds, molecules and polymers, that include the bridging ligands HF2-, AF62- (A = Ti, Zr) and pyrazine or non-bridging ligands F-, SiF62-, glycine, H2O, 1-vinylimidazole, 4-methylpyrazole and 3-hydroxypyridine. Pseudo-octahedral NiN4F2, NiN4O2 or NiN4OF cores consist of equatorial Ni-N bonds that are equal to or slightly longer than the axial Ni-Lax bonds. By design, the zero-field splitting (D) is large in these systems and, in the presence of substantial exchange interactions (J), can be difficult to discriminate from magnetometry measurements on powder samples. Thus, we relied on pulsed-field magnetization in those cases and employed electron-spin resonance (ESR) to confirm D when J 0) and range from ≈ 8-25 K. This work reveals a linear correlation between the ratio d(Ni-Lax)/d(Ni-Neq) and D although the ligand spectrochemical properties may also be important. We assert that this relationship allows us to predict the type of magnetocrystalline anisotropy in tailored Ni(II) quantum magnets

    Feeling gender speak: intersubjectivity and fieldwork practice with women who prostitute in Lima, Peru

    Get PDF
    This article discusses a dimension of fieldwork methodology often overlooked. It concerns the act of feeling (inferences) and how this subjective ability contributes to understanding cultural meanings, which are unspoken or encoded in dialogue, but remain unarticulated. The discovery of this dimension in fieldwork eventually brought several epistemological principles into question pertaining to power and intersubjectivity subscribed to in a feminist or critical anthropology. Simultaneously, the use of this dimension in fieldwork gave insight into the relational construction of gender identity - the author’s own, that of the women and a male assistant. The article illustrates this by reconstructing different ethnographic moments during fieldwork practice. Moreover, it aims to put these theoretical assertions into practice by presenting an ethnographic narrative intended to evoke meanings that contribute to feeling the construction of identity through interaction in fieldwork practice

    Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission

    Get PDF
    We demonstrate the first fluorozirconate microstructured fiber for use in the mid-infrared. The fiber preform was manufactured via extrusion of a 200 g billet through a complex graphite die. The fiber exhibits large mode area of 6,600 microm(2), loss of 3 dB/m at 4 microm and only marginal excess loss relative to a corresponding unstructured fiber.Heike Ebendorff-Heidepriem, Tze-Cheung Foo, Roger C. Moore, Wenqi Zhang, Yahua Li, Tanya M. Monro, Alexander Hemming and David G. Lancaste

    Creep strength and minimum strain rate estimation from Small Punch Creep tests

    Get PDF
    A new standard is currently being developed under the auspices of ECISS/TC 101 WG1 for the small punch testing technique for the estimation of both tensile and creep properties. Annex G of the new standard is covering the assessment and evaluation of small punch creep (SPC) data. The main challenge for estimating uniaxial creep properties from SPC data is the force to equivalent stress conversion between SPC and uniaxial creep tests. In this work a range of SPC assessment methodologies, benchmarked for the standard, are compared for verifying the best practice used in the standard. The estimated equivalent stresses for SPC are compared to uniaxial creep stresses at equal rupture times, using three alternative models. In-depth analyses are performed on SPC and uniaxial creep data for P92, F92 and 316 L steel tested within an inter-laboratory round robin. The formulation for SPC equivalent creep strain rate in the standard is also assessed
    • …
    corecore