12 research outputs found

    The role of the sea surface temperature in the atmospheric seasonal cycle of the equatorial Atlantic

    Get PDF
    We investigate the role of sea surface temperature (SST) and land surface temperature (LST) in driving the seasonal cycle of the atmosphere (surface winds and precipitation) in the tropical Atlantic. For this we compare three atmospheric general circulation model (AGCM) experiments for the historical period 1982–2013 forced by different SST: (1) observed daily-climatological SST, (2) globally annual-mean SST, and (3) annual-mean SST in the equatorial Atlantic and daily-climatological SST elsewhere. Seasonal variations in SST strongly influence the seasonal evolution of the West African Monsoon (WAM) and ITCZ over the equatorial Atlantic Ocean. Forcing the model with annual mean SST (globally and in the equatorial Atlantic) considerably reduces the seasonal variance in the atmosphere, except for the zonal winds in the eastern equatorial Atlantic. Equatorial Atlantic SST contributes to the seasonal cycle in precipitation and meridional winds over the entire equatorial Atlantic, but only strongly influences zonal winds in the western equatorial Atlantic and has little influence on the northward penetration of the WAM. The leading modes of coupled SST–LST-atmosphere co-variability are identified by multivariate analysis. The analysis shows that both LST and SST drive seasonal variations in precipitation over equatorial Atlantic, with the LST being a larger contributor to the continental rainfall in West Africa. The coupling between ocean and atmosphere is stronger in the western than in the eastern equatorial Atlantic. The pressure adjustment mechanism is the main driver of the surface meridional wind convergence in the eastern tropical Atlantic.publishedVersio

    Multidecadal variability of ENSO in a recharge oscillator framework

    Get PDF
    We use a conceptual recharge oscillator model to identify changes in El Niño and the Southern Oscillation (ENSO) statistics and dynamics during the observational record. The variability of ENSO has increased during the 20th century. The cross-correlation between sea surface temperature (SST) and warm water volume (WWV) has also changed during the observational record. From the 1970s onwards, the SST drives WWV anomalies with a lead-time of ten months and the WWV feedbacks onto the SST with a lead-time of eight months. This is reminiscent of a recharge-discharge mechanism of the upper ocean heat content. The full recharge-discharge mechanism is only observed from the 1970s onwards. This could be the result of the degradation of the quality of observations in the early part of the 20th century. However, it may also be a consequence of decadal changes in the coupling between WWV and SST. Additional analysis fitting the recharge oscillator model to the coupled state-of-the-art climate models indicates that ENSO properties show little decadal changes in the climate models. The disagreement in changes in ENSO properties between the reanalysis and the climate models can be due to errors in the available observational data or due to the models missing the low frequency variability and decadal wind trends. Longer and more reliable observational records would be required to validate our results.publishedVersio

    Disentangling the impact of Atlantic Niño on sea-air CO2 flux

    Get PDF
    Atlantic Niño is a major tropical interannual climate variability mode of the sea surface temperature (SST) that occurs during boreal summer and shares many similarities with the tropical Pacific El Niño. Although the tropical Atlantic is an important source of CO2 to the atmosphere, the impact of Atlantic Niño on the sea-air CO2 exchange is not well understood. Here we show that the Atlantic Niño enhances (weakens) CO2 outgassing in the central (western) tropical Atlantic. In the western basin, freshwater-induced changes in surface salinity, which considerably modulate the surface ocean CO2 partial pressure (pCO2), are the primary driver for the observed CO2 flux variations. In contrast, pCO2 anomalies in the central basin are dominated by the SST-driven solubility change. This multi-variable mechanism for pCO2 anomaly differs remarkably from the Pacific where the response is predominantly controlled by upwelling-induced dissolved inorganic carbon anomalies. The contrasting behavior is characterized by the high CO2 buffering capacity in the Atlantic, where the subsurface water mass contains higher alkalinity than in the Pacific.publishedVersio

    Conflict transformation in indigenous' peoples territories: doing environmental justice with a 'decolonial turn'

    Get PDF
    One of the distinctive features of environmental justice theory in Latin America is its influence by decolonial thought, which explains social and environmental injustices as arising from the project of modernity and the ongoing expansion of a European cultural imaginary. The decolonization of knowledge and social relations is highlighted as one of the key challenges for overcoming the history of violent oppression and marginalization in development and conservation practice in the region. In this paper we discuss how conflict transformation theory and practice has a role to play in this process. In doing so, we draw on the Socio-environmental Conflict Transformation (SCT) framework elaborated by Grupo Confluencias, which puts a focus on building community capacity to impact different spheres of power: people and networks, structures and cultural power. We discuss this framework and its practical use in the light of ongoing experiences with indigenous peoples in Latin America. We propose that by strengthening the power of agency of indigenous peoples to impact each of these spheres it is possible to build constructive intra and intercultural relations that can help increase social and environmental justice in their territories and thus contribute to decolonizing structures, relations and ways of being

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    The role of the sea surface temperature in the atmospheric seasonal cycle of the equatorial Atlantic

    No full text
    We investigate the role of sea surface temperature (SST) and land surface temperature (LST) in driving the seasonal cycle of the atmosphere (surface winds and precipitation) in the tropical Atlantic. For this we compare three atmospheric general circulation model (AGCM) experiments for the historical period 1982–2013 forced by different SST: (1) observed daily-climatological SST, (2) globally annual-mean SST, and (3) annual-mean SST in the equatorial Atlantic and daily-climatological SST elsewhere. Seasonal variations in SST strongly influence the seasonal evolution of the West African Monsoon (WAM) and ITCZ over the equatorial Atlantic Ocean. Forcing the model with annual mean SST (globally and in the equatorial Atlantic) considerably reduces the seasonal variance in the atmosphere, except for the zonal winds in the eastern equatorial Atlantic. Equatorial Atlantic SST contributes to the seasonal cycle in precipitation and meridional winds over the entire equatorial Atlantic, but only strongly influences zonal winds in the western equatorial Atlantic and has little influence on the northward penetration of the WAM. The leading modes of coupled SST–LST-atmosphere co-variability are identified by multivariate analysis. The analysis shows that both LST and SST drive seasonal variations in precipitation over equatorial Atlantic, with the LST being a larger contributor to the continental rainfall in West Africa. The coupling between ocean and atmosphere is stronger in the western than in the eastern equatorial Atlantic. The pressure adjustment mechanism is the main driver of the surface meridional wind convergence in the eastern tropical Atlantic

    Multidecadal variability of ENSO in a recharge oscillator framework

    No full text
    We use a conceptual recharge oscillator model to identify changes in El Niño and the Southern Oscillation (ENSO) statistics and dynamics during the observational record. The variability of ENSO has increased during the 20th century. The cross-correlation between sea surface temperature (SST) and warm water volume (WWV) has also changed during the observational record. From the 1970s onwards, the SST drives WWV anomalies with a lead-time of ten months and the WWV feedbacks onto the SST with a lead-time of eight months. This is reminiscent of a recharge-discharge mechanism of the upper ocean heat content. The full recharge-discharge mechanism is only observed from the 1970s onwards. This could be the result of the degradation of the quality of observations in the early part of the 20th century. However, it may also be a consequence of decadal changes in the coupling between WWV and SST. Additional analysis fitting the recharge oscillator model to the coupled state-of-the-art climate models indicates that ENSO properties show little decadal changes in the climate models. The disagreement in changes in ENSO properties between the reanalysis and the climate models can be due to errors in the available observational data or due to the models missing the low frequency variability and decadal wind trends. Longer and more reliable observational records would be required to validate our results
    corecore