97 research outputs found

    Measurement of ϒ production in pp collisions at √s = 2.76 TeV

    Get PDF
    The production of ϒ(1S), ϒ(2S) and ϒ(3S) mesons decaying into the dimuon final state is studied with the LHCb detector using a data sample corresponding to an integrated luminosity of 3.3 pb−1 collected in proton–proton collisions at a centre-of-mass energy of √s = 2.76 TeV. The differential production cross-sections times dimuon branching fractions are measured as functions of the ϒ transverse momentum and rapidity, over the ranges pT < 15 GeV/c and 2.0 < y < 4.5. The total cross-sections in this kinematic region, assuming unpolarised production, are measured to be σ (pp → ϒ(1S)X) × B ϒ(1S)→μ+μ− = 1.111 ± 0.043 ± 0.044 nb, σ (pp → ϒ(2S)X) × B ϒ(2S)→μ+μ− = 0.264 ± 0.023 ± 0.011 nb, σ (pp → ϒ(3S)X) × B ϒ(3S)→μ+μ− = 0.159 ± 0.020 ± 0.007 nb, where the first uncertainty is statistical and the second systematic

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Study of the doubly charmed tetraquark T+cc

    Get PDF
    Quantum chromodynamics, the theory of the strong force, describes interactions of coloured quarks and gluons and the formation of hadronic matter. Conventional hadronic matter consists of baryons and mesons made of three quarks and quark-antiquark pairs, respectively. Particles with an alternative quark content are known as exotic states. Here a study is reported of an exotic narrow state in the D0D0π+ mass spectrum just below the D*+D0 mass threshold produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The state is consistent with the ground isoscalar T+cc tetraquark with a quark content of ccu⎯⎯⎯d⎯⎯⎯ and spin-parity quantum numbers JP = 1+. Study of the DD mass spectra disfavours interpretation of the resonance as the isovector state. The decay structure via intermediate off-shell D*+ mesons is consistent with the observed D0π+ mass distribution. To analyse the mass of the resonance and its coupling to the D*D system, a dedicated model is developed under the assumption of an isoscalar axial-vector T+cc state decaying to the D*D channel. Using this model, resonance parameters including the pole position, scattering length, effective range and compositeness are determined to reveal important information about the nature of the T+cc state. In addition, an unexpected dependence of the production rate on track multiplicity is observed

    Discretized optimal control approach for dynamic Multi-Agent decentralized coverage

    Get PDF
    International audienceThis paper presents a novel discrete-time decentralized control law for the Voronoi-based self-deployment of a Multi-Agent dynamical system. The basic control objective is to let the agents deploy into a bounded convex polyhedral region and maximize the coverage quality by computing locally the control action for each agent. The Voronoi tessellation algorithm is employed to partition dynamically the deployed region and to allocate each agent to a corresponding bounded functioning zone at each time instant. The control synthesis is then locally computed based on an optimal formulation framework related to the Lloyd’s algorithm but according to the discrete-time agent’s dynamics equation. The performance of the discretized optimal solution will be demonstrated via an illustrative example

    Fatal Myopericarditis Following an Influenza A (H3N2) Infection

    Get PDF
    International audienceBACKGROUND Influenza viruses induce uncomplicated infections in most cases in individuals with no known predisposing factors. Acute febrile illness is generally limited to upper respiratory symptoms and several constitutional symptoms, including headache, lethargy, and myalgia. However, influenza A virus is a cause of severe morbidity and mortality worldwide. Some patients are at risk for serious and fatal complications. Cardiac involvement is a well-known condition, but, clinically apparent influenza myocarditis is not common. Few reports exist regarding recurrent fulminant influenza myocarditis. CASE REPORT We report here a fatal case of heart failure following myocarditis in a 14-year-old female who had seasonal flu symptoms but was otherwise healthy. H3N2 influenza virus infection was detected by molecular analyses of throat and nasal swabs, suggesting damage to myocardial cells caused directly by the virus. CONCLUSIONS Pericardial effusion myopericarditis may occur during influenza virus infection in young individuals, even those with no known predisposing factors. Physicians need to be aware that acute myopericarditis can be a fatal complication of recent influenza virus infection in all patients with instable hemodynamics. Early diagnosis and treatment could reduce, in some cases, the risk of severe cardiac events. However, this sudden and fatal outcome was difficult to predict in a healthy young female with no known risk factors

    CCN2 Aggravates the Immediate Oxidative Stress–DNA Damage Response following Renal Ischemia–Reperfusion Injury

    No full text
    AKI, due to the fact of altered oxygen supply after kidney transplantation, is characterized by renal ischemia–reperfusion injury (IRI). Recent data suggest that AKI to CKD progression may be driven by cellular senescence evolving from prolonged DNA damage response (DDR) following oxidative stress. Cellular communication factor 2 (CCN2, formerly called CTGF) is a major contributor to CKD development and was found to aggravate DNA damage and the subsequent DDR–cellular senescence–fibrosis sequence following renal IRI. We therefore investigated the impact of CCN2 inhibition on oxidative stress and DDR in vivo and in vitro. Four hours after reperfusion, full transcriptome RNA sequencing of mouse IRI kidneys revealed CCN2-dependent enrichment of several signaling pathways, reflecting a different immediate stress response to IRI. Furthermore, decreased staining for γH2AX and p-p53 indicated reduced DNA damage and DDR in tubular epithelial cells of CCN2 knockout (KO) mice. Three days after IRI, DNA damage and DDR were still reduced in CCN2 KO, and this was associated with reduced oxidative stress, marked by lower lipid peroxidation, protein nitrosylation, and kidney expression levels of Nrf2 target genes (i.e., HMOX1 and NQO1). Finally, silencing of CCN2 alleviated DDR and lipid peroxidation induced by anoxia-reoxygenation injury in cultured PTECs. Together, our observations suggest that CCN2 inhibition might mitigate AKI by reducing oxidative stress-induced DNA damage and the subsequent DDR. Thus, targeting CCN2 might help to limit post-IRI AKI

    Age and Sex Ratios in a High-Density Wild Red-Legged Partridge Population

    Get PDF
    The dynamics of a wild red-legged partridge population were examined over a 14-year period in Spain to identify patterns in age and sex ratios in relation to weather parameters, and to assess the importance of these parameters in population dynamics and management. The results gave age ratios of 1.07 (but 2.13 in July counts), juvenile sex ratios of 1.01 and adult sex ratios of 1.47. Overall, 12% more females were hatched and female juvenile mortality was 7.3% higher than in males. Sex differential mortality explains the 19.2% deficit in adult females, which are more heavily predated than males during the breeding period. Accordingly, age ratios are dependent on sex ratios and both are density dependent. Over time, ratios and density changes appear to be influenced by weather and management. When the habitat is well conserved, partridge population dynamics can be explained by a causal chain: weather operates on net primary production, thereby affecting partridge reproduction and predation and, as a result, age and sex ratios in the October population. A reduction in the impact of predation (i.e. the effects of ground predators on eggs, chicks and breeding females) is the key factor to improve the conservation of partridge populations and associated biological processes
    corecore