1,063 research outputs found

    Clearing algorithms and network centrality

    Full text link
    I show that the solution of a standard clearing model commonly used in contagion analyses for financial systems can be expressed as a specific form of a generalized Katz centrality measure under conditions that correspond to a system-wide shock. This result provides a formal explanation for earlier empirical results which showed that Katz-type centrality measures are closely related to contagiousness. It also allows assessing the assumptions that one is making when using such centrality measures as systemic risk indicators. I conclude that these assumptions should be considered too strong and that, from a theoretical perspective, clearing models should be given preference over centrality measures in systemic risk analyses

    Rockfall Hazard Analysis at Small Scale: A Numerical Study for the Estimation of Representative Slope Parameters

    Get PDF
    The identification of rockfall-affected areas depends on a large number of stochastic variables influencing both triggering and propagation phases. Therefore, rockfall hazard assessment presents huge uncertainties linked to the various scales of analysis. At the small scale (e.g. valley scale), a quick evaluation of rockfall hazard zones is generally required in order to highlight the most critical situations where more detailed analyses should be carried out. The Cone Method (Jaboyedoff and Labiouse 2011), recently implemented in the QPROTO plugin for QGIS, allows to reach this goal with simplified geometrical considerations. In a 3D analysis, the energy line angle and the lateral spreading angle α define a cone of propagation whose apex is located in the rockfall source point. The most significant issue in using the plugin is the evaluation of these angles, which must be defined by the users to consider all the rockfall dissipative processes included in the energy line method (Evans and Hungr 1993). In this paper a study concerning the influence of slope properties (forest coverage and slope inclination) and block characteristics (shape and volume) is proposed, in order to provide to the users of the plugin a preliminary dataset of calibrated angles

    The extreme mobility of debris avalanches: A new model of transport mechanism

    Get PDF
    International audienceLarge rockslide-debris avalanches, resulting from flank collapses that shape volcanoes and mountains on Earth and other object of the solar system, are rapid and dangerous gravity-driven granular flows that travel abnormal distances. During the last 50 years, numerous physical models have been put forward to explain their extreme mobility. The principal models are based on fluidization, lubrication, or dynamic disintegration. However, these processes remain poorly constrained. To identify precisely the transport mechanisms during debris avalanches, we examined morphometric (fractal dimension and circularity), grain size, and exoscopic characteristics of the various types of particles (clasts and matrix) from volcanic debris avalanche deposits of La Réunion Island (Indian Ocean). From these data we demonstrate for the first time that syn-transport dynamic disintegration continuously operates with the increasing runout distance from the source down to a grinding limit of 500 μm. Below this limit, the particle size reduction exclusively results from their attrition by frictional interactions. Consequently, the exceptional mobility of debris avalanches may be explained by the combined effect of elastic energy release during the dynamic disintegration of the larger clasts and frictional reduction within the matrix due to interactions between the finer particles

    Multiple configurations of N-methylpyrrole binding on Si(111)-7×7

    Get PDF
    The adsorption configurations of N-methylpyrrole on Si(111)-7×7 were investigated using high-resolution electron energy-loss spectroscopy, x-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy (STM), and density function theory calculations. Compared to physisorbed N-methylpyrrole, chemisorbed molecules present a different vibrational feature at 2886 cm-1 attributable to ν[(Si)Csp3-H] in addition to the vibrational features of (sp2)Cα-H (3106 cm-1), (sp2)Cβ-H (3050 cm-1), and C—H of CH3 (2944 cm-1) stretching modes, demonstrating the direct interaction between C=C bonds and Si(111)-7×7. The major change of N 1s XPS spectrum of N-methylpyrrole upon chemisorption strongly suggests the coexistence of two chemisorption states, further confirmed in the strong dependence of STM image features on the sample bias together with statistical analysis. The concurrent occurrence of [4+2] and [2+2] cycloadditions is proposed to account for these two adsorption configurations of N-methylpyrrole on Si(111)-7×

    Prediction of peptide and protein propensity for amyloid formation

    Get PDF
    Understanding which peptides and proteins have the potential to undergo amyloid formation and what driving forces are responsible for amyloid-like fiber formation and stabilization remains limited. This is mainly because proteins that can undergo structural changes, which lead to amyloid formation, are quite diverse and share no obvious sequence or structural homology, despite the structural similarity found in the fibrils. To address these issues, a novel approach based on recursive feature selection and feed-forward neural networks was undertaken to identify key features highly correlated with the self-assembly problem. This approach allowed the identification of seven physicochemical and biochemical properties of the amino acids highly associated with the self-assembly of peptides and proteins into amyloid-like fibrils (normalized frequency of β-sheet, normalized frequency of β-sheet from LG, weights for β-sheet at the window position of 1, isoelectric point, atom-based hydrophobic moment, helix termination parameter at position j+1 and ΔGº values for peptides extrapolated in 0 M urea). Moreover, these features enabled the development of a new predictor (available at http://cran.r-project.org/web/packages/appnn/index.html) capable of accurately and reliably predicting the amyloidogenic propensity from the polypeptide sequence alone with a prediction accuracy of 84.9 % against an external validation dataset of sequences with experimental in vitro, evidence of amyloid formation

    Exclusivity and exclusion on platform markets

    Get PDF
    We examine conditions under which an exclusive license granted by the upstream producer of a component that some consumers regard as essential to one of two potential suppliers of a downstream platform market can make the unlicensed supplier unprofitable, although both firms would be profitable if both were licensed. If downstream varieties are close substitutes, an exclusive license need not be exclusionary. If downstream varieties are highly differentiated, an exclusive license is exclusionary, but it is not in the interest of the upstream firm to grant an exclusive license. For intermediate levels of product differentiation, an exclusive license is exclusionary and maximizes the upstream firm’s payoff

    The ArDM experiment

    Get PDF
    The aim of the ArDM project is the development and operation of a one ton double-phase liquid argon detector for direct Dark Matter searches. The detector measures both the scintillation light and the ionization charge from ionizing radiation using two independent readout systems. This paper briefly describes the detector concept and presents preliminary results from the ArDM R&D program, including a 3 l prototype developed to test the charge readout system.Comment: Proceedings of the Epiphany 2010 Conference, to be published in Acta Physica Polonica
    corecore