39 research outputs found
Development of the chronic obstructive pulmonary disease morning symptom diary (COPD-MSD).
BACKGROUND: The morning tends to be the most difficult time of day for many patients with chronic obstructive pulmonary disease (COPD) when symptoms can limit one's ability to perform even simple activities. Morning symptoms have been linked to higher levels of work absenteeism, thereby increasing the already substantial economic burden associated with COPD. A validated patient-reported outcome (PRO) instrument designed to capture morning symptoms will allow for a more comprehensive approach to the evaluation of treatment benefit in COPD clinical trials. METHODS: A qualitative interview study was conducted among a sample of symptomatic adults with COPD. Concept elicitation interviews (n = 35) were conducted to identify COPD morning symptoms, followed by cognitive interviews (n = 21) to ensure patient comprehension of the items, instructions and response options of the draft COPD Morning Symptom Diary (COPD-MSD). All interview transcript data were coded using ATLAS.ti software for content analysis. RESULTS: Mean age of the concept elicitation and cognitive interview sample was 65.0 years (±7.5) and 62.3 years (±8.3), respectively. The study sample represented the full range of COPD severity (Global Initiative for Chronic Lung Disease [GOLD] classifications I-IV) and included a mix of racial backgrounds, employment status and educational achievement. During the concept elicitation interviews, the three most frequently reported morning symptoms were shortness of breath (n = 35/35; 100 %), phlegm/mucus (n = 31/35; 88.6 %), and cough (n = 30/35; 85.7 %). A group of clinical and instrument development experts convened to review the concept elicitation data and develop the initial 32-item draft COPD-MSD. Cognitive interviews indicated subjects found the draft COPD-MSD to be comprehensive, clear, and easy to understand. The COPD-MSD underwent minor editorial revisions and streamlining based on cognitive interviews and input from the experts to yield the final 19-item daily diary. CONCLUSIONS: This study supports the content validity of the new COPD-MSD and positions the diary for quantitative psychometric testing
Structure, Function, and Evolution of the Thiomonas spp. Genome
Bacteria of the Thiomonas genus are ubiquitous in extreme environments, such as arsenic-rich acid mine drainage (AMD). The genome of one of these strains, Thiomonas sp. 3As, was sequenced, annotated, and examined, revealing specific adaptations allowing this bacterium to survive and grow in its highly toxic environment. In order to explore genomic diversity as well as genetic evolution in Thiomonas spp., a comparative genomic hybridization (CGH) approach was used on eight different strains of the Thiomonas genus, including five strains of the same species. Our results suggest that the Thiomonas genome has evolved through the gain or loss of genomic islands and that this evolution is influenced by the specific environmental conditions in which the strains live
Constitutive Activation of PrfA Tilts the Balance of Listeria monocytogenes Fitness Towards Life within the Host versus Environmental Survival
PrfA is a key regulator of Listeria monocytogenes pathogenesis and induces the expression of multiple virulence factors within the infected host. PrfA is post-translationally regulated such that the protein becomes activated upon bacterial entry into the cell cytosol. The signal that triggers PrfA activation remains unknown, however mutations have been identified (prfA* mutations) that lock the protein into a high activity state. In this report we examine the consequences of constitutive PrfA activation on L. monocytogenes fitness both in vitro and in vivo. Whereas prfA* mutants were hyper-virulent during animal infection, the mutants were compromised for fitness in broth culture and under conditions of stress. Broth culture prfA*-associated fitness defects were alleviated when glycerol was provided as the principal carbon source; under these conditions prfA* mutants exhibited a competitive advantage over wild type strains. Glycerol and other three carbon sugars have been reported to serve as primary carbon sources for L. monocytogenes during cytosolic growth, thus prfA* mutants are metabolically-primed for replication within eukaryotic cells. These results indicate the critical need for environment-appropriate regulation of PrfA activity to enable L. monocytogenes to optimize bacterial fitness inside and outside of host cells
Genetic effects on gene expression across human tissues
Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of diseas
Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine
Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine
Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19
Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe
Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies
There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity
A high-throughput platform for stem cell niche co-cultures and downstream gene expression analysis
Stem cells reside in 'niches', where support cells provide critical signalling for tissue renewal. Culture methods mimic niche conditions and support the growth of stem cells in vitro. However, current functional assays preclude statistically meaningful studies of clonal stem cells, stem cell-niche interactions, and genetic analysis of single cells and their organoid progeny. Here, we describe a 'microraft array' (MRA) that facilitates high-throughput clonogenic culture and computational identification of single intestinal stem cells (ISCs) and niche cells. We use MRAs to demonstrate that Paneth cells, a known ISC niche component, enhance organoid formation in a contact-dependent manner. MRAs facilitate retrieval of early enteroids for quantitative PCR to correlate functional properties, such as enteroid morphology, with differences in gene expression. MRAs have broad applicability to assaying stem cell-niche interactions and organoid development, and serve as a high-throughput culture platform to interrogate gene expression at early stages of stem cell fate choices
Genetic effects on gene expression across human tissues
Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease
Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.
BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0-75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4-97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8-80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3-4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D'Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca