12 research outputs found

    The transcriptional landscape of age in human peripheral blood

    Get PDF
    Disease incidences increase with age, but the molecular characteristics of ageing that lead to increased disease susceptibility remain inadequately understood. Here we perform a whole-blood gene expression meta-analysis in 14,983 individuals of European ancestry (including replication) and identify 1,497 genes that are differentially expressed with chronological age. The age-associated genes do not harbor more age-associated CpG-methylation sites than other genes, but are instead enriched for the presence of potentially functional CpG-methylation sites in enhancer and insulator regions that associate with both chronological age and gene expression levels. We further used the gene expression profiles to calculate the 'transcriptomic age' of an individual, and show that differences between transcriptomic age and chronological age are associated with biological features linked to ageing, such as blood pressure, cholesterol levels, fasting glucose, and body mass index. The transcriptomic prediction model adds biological relevance and complements existing epigenetic prediction models, and can be used by others to calculate transcriptomic age in external cohorts.Peer reviewe

    Tolfenamic Acid Inhibits Neuroblastoma Cell Proliferation And Induces Apoptosis: A Novel Therapeutic Agent For Neuroblastoma

    No full text
    Current therapeutic options for recurrent neuroblastoma have poor outcomes that warrant the development of novel therapeutic strategies. Specificity protein (Sp) transcription factors regulate several genes involved in cell proliferation, survival, and angiogenesis. Sp1 regulates genes believed to be important determinants of the biological behavior of neuroblastoma. Tolfenamic acid (TA), a non-steroidal anti-inflammatory drug, is known to induce the degradation of Sp proteins and may serve as a novel anti-cancer agent. The objective of this investigation was to examine the anti-cancer activity of TA using established human neuroblastoma cell lines. We tested the anti-proliferative effect of TA using SH-SY5Y, CHLA90, LA1 55n, SHEP, Be2c, CMP 13Y, and SMS KCNR cell lines. Cells were treated with TA (0/25/50/100μM) and cell viability was measured at 24, 48, and 72h post-treatment. Selected neuroblastoma cell lines were treated with 50μM TA for 24 and 48h and tested for cell apoptosis using Annexin-V staining. Caspase activity was measured with caspase 3/7 Glo kit. Cell lysates were prepared and the expression of Sp1, survivin, and c-PARP were evaluated through Western blot analysis. TA significantly inhibited the growth of neuroblastoma cells in a dose/time-dependent manner and significantly decreased Sp1 and survivin expression. Apart from cell cycle (G0/G1) arrest, TA caused significant increase in the apoptotic cell population, caspase 3/7 activity, and c-PARP expression. These results show that TA effectively inhibits neuroblastoma cell growth potentially through suppressing mitosis, Sp1, and survivin expression, and inducing apoptosis. These results show TA as a novel therapeutic agent for neuroblastoma. © 2011 Wiley Periodicals, Inc

    Blockade Of Mgmt Expression By O\u3csup\u3e6\u3c/sup\u3e Benzyl Guanine Leads To Inhibition Of Pancreatic Cancer Growth And Induction Of Apoptosis

    No full text
    Purpose: We sought to determine whether administration of a MGMT blocker, O6-benzyl guanine (O6BG), at an optimal biological dose alone or in combination with gemcitabine inhibits human pancreatic cancer cell growth. Experimental Design: Human pancreatic cancer L3.6pl and PANC1 cells were treated with O6BG, either alone or in combination with gemcitabine, and the therapeutic efficacy and biological activity of these drug combinations were investigated. Results: O6BG sensitized pancreatic cancer cells to gemcitabine. Protein and mRNA expression of MGMT, cyclin B1, cyclin B2, cyclin A, and ki-67 were significantly decreased in the presence of O 6BG. In sharp contrast, protein expression and mRNA message of p21cip1 were significantly increased. Interestingly, O6BG increases p53-mediated p21cip1 transcriptional activity and suppresses cyclin B1. In addition, our results indicate that p53 is recruited to p21 promoter. Furthermore, an increase in p21cip1 and a decrease in cyclin transcription are p53 dependent. The volume of pancreatic tumors was reduced by 27% in mice treated with gemcitabine alone, by 47% in those treated with O6BG alone, and by 65% in those mice given combination. Immunohistochemical analysis showed that O6BG inhibited expression of MGMT and cyclins, and increased expression of p21cip1. Furthermore, there was a significant decrease in tumor cell proliferation and an increase in tumor cell apoptosis. Conclusions: Collectively, our results show that decreased MGMT expression is correlated with p53 activation, and significantly reduced primary pancreatic tumor growth. These findings suggest that O6BG either alone or in combination with gemcitabine may provide a novel and effective approach for the treatment of human pancreatic cancer. © 2009 American Association for Cancer Research

    Cellular and Organismal Toxicity of the Anti-Cancer Small Molecule, Tolfenamic Acid: a Pre-Clinical Evaluation

    Get PDF
    Background/Aims: The small molecule, Tolfenamic acid (TA) has shown anti-cancer activity in pre-clinical models and is currently in Phase I clinical trials at MD Anderson Cancer Center Orlando. Since specificity and toxicity are major concerns for investigational agents, we tested the effect of TA on specific targets, and assessed the cellular and organismal toxicity representing pre-clinical studies in cancer. Methods: Panc1, L3.6pl, and MiaPaCa-2 (pancreatic cancer), hTERT-HPNE(normal), and differentiated/un-differentiated SH-SY5Y (neuroblastoma) cells were treated with increasing concentrations of TA. Cell viability and effect on specific molecular targets, Sp1 and survivin were determined. Athymic nude mice were treated with vehicle or TA (50mg/kg, 3times/week for 6 weeks) and alterations in the growth pattern, hematocrit, and histopathology of gut, liver, and stomach were monitored. Results: TA treatment decreased cell proliferation and inhibited the expression of Sp1 and survivin in cancer cells while only subtle response was observed in normal (hTERT-HPNE) and differentiated SH-SY5Y cells. Mice studies revealed no effect on body weight and hematocrit. Furthermore, TA regimen did not cause signs of internal-bleeding or damage to vital tissues in mice. Conclusion: These results demonstrate that TA selectively inhibits malignant cell growth acting on specific targets and its chronic treatment did not cause apparent toxicity in nude mice

    Notch activation inhibits AML growth and survival: a potential therapeutic approach

    No full text
    Although aberrant Notch activation contributes to leukemogenesis in T cells, its role in acute myelogenous leukemia (AML) remains unclear. Here, we report that human AML samples have robust expression of Notch receptors; however, Notch receptor activation and expression of downstream Notch targets are remarkably low, suggesting that Notch is present but not constitutively activated in human AML. The functional role of these Notch receptors in AML is not known. Induced activation through any of the Notch receptors (Notch1–4), or through the Notch target Hairy/Enhancer of Split 1 (HES1), consistently leads to AML growth arrest and caspase-dependent apoptosis, which are associated with B cell lymphoma 2 (BCL2) loss and enhanced p53/p21 expression. These effects were dependent on the HES1 repressor domain and were rescued through reexpression of BCL2. Importantly, activated Notch1, Notch2, and HES1 all led to inhibited AML growth in vivo, and Notch inhibition via dnMAML enhanced proliferation in vivo, thus revealing the physiological inhibition of AML growth in vivo in response to Notch signaling. As a novel therapeutic approach, we used a Notch agonist peptide that led to significant apoptosis in AML patient samples. In conclusion, we report consistent Notch-mediated growth arrest and apoptosis in human AML, and propose the development of Notch agonists as a potential therapeutic approach in AML
    corecore