9 research outputs found

    The GEOTRACES Intermediate Data Product 2014

    Get PDF
    The GEOTRACES Intermediate Data Product 2014 (IDP2014) is the first publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2013. It consists of two parts: (1) a compilation of digital data for more than 200 trace elements and isotopes (TEIs) as well as classical hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing a strongly inter-linked on-line atlas including more than 300 section plots and 90 animated 3D scenes. The IDP2014 covers the Atlantic, Arctic, and Indian oceans, exhibiting highest data density in the Atlantic. The TEI data in the IDP2014 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at cross-over stations. The digital data are provided in several formats, including ASCII spreadsheet, Excel spreadsheet, netCDF, and Ocean Data View collection. In addition to the actual data values the IDP2014 also contains data quality flags and 1-? data error values where available. Quality flags and error values are useful for data filtering. Metadata about data originators, analytical methods and original publications related to the data are linked to the data in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2014 data providing section plots and a new kind of animated 3D scenes. The basin-wide 3D scenes allow for viewing of data from many cruises at the same time, thereby providing quick overviews of large-scale tracer distributions. In addition, the 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of observed tracer plumes, as well as for making inferences about controlling processes

    Organic Fe speciation in the Eurasian Basins of the Arctic Ocean and its relation to terrestrial DOM

    Get PDF
    The bio-essential trace metal iron (Fe) has poor inorganic solubility in seawater, and therefore dissolution is dependent on organic complexation. The Arctic Ocean is subject to strong terrestrial influences which contribute to organic solubility of Fe, particularly in the surface. These influences are subject to rapid changes in the catchments of the main contributing rivers. Here we report concentrations and binding strengths of Fe-binding organic ligands in relation to spectral properties of Dissolved Organic Matter (DOM) and concentrations of humic substances. Full-depth profiles of Fe and Fe-binding organic ligands were measured for 11 stations, good agreement to previous studies was found with ligand concentrations between 0.9 and 2.2 equivalent nM of Fe (Eq. nM Fe) at depths > 200 m. We found nutrient-like profiles of Fe in the Atlantic-influenced Nansen basin, surface enrichment in the surface over the Amundsen and Makarov basins and scavenging effects in the deep Makarov basin. A highly detailed surface transect consisting of two sections crossing the surface flow from the Siberian continental shelf to the Fram Strait, the TransPolar Drift (TPD), clearly indicates the flow path of the riverine contribution to Fe and Fe-binding organic ligands with concentrations of 0.7 to 4.4 nM and 1.6 to 4.1 Eq. nM Fe, respectively. This is on average 4.5 times higher in DFe and 1.7 times higher in Fe-binding organic ligands than outside the TPD flow path. Conditional binding strengths of ligands in the entire dataset were remarkably similar at 11.4

    二南斎智角編『はい諧水いらす』翻刻と解題 : 不角の弟子の撰集

    Get PDF
    Many trace elements like Mn, Fe, Co, Ni, Cu and Zn are essential for marine life, some trace elements are of concern as pollutants, e.g. Pb and Hg, while others, together with a diverse array of isotopes, are used to assess modern-ocean processes and the role of the ocean in past climate change. GEOTRACES is an international program that aims to measure the distribution of trace elements and isotopes throughout the world oceans to improve our understanding of their marine biogeochemical cycles. To contribute to GEOTRACES a new sampler system was developed at NIOZ allowing efficient sampling of large volumes of seawater under ultraclean conditions. The 24 "PRISTINE" samplers each with a volume of 24.4 L are made of a high-purity polymer Polyvinylidene Fluoride (PVDF) and are opened and closed using a butterfly-valve closing mechanism. The samplers are mounted on an all-titanium frame and deployed using a poly-aramide hydrowire (Super Aram) with internal power/signal conductors. Upon recovery the complete frame is immediately placed in its own clean-air laboratory unit. Samplers are (i) always closed when onboard, (ii) always mounted on the frame without the need for hand-carrying heavy samplers, and (iii) can be deployed again with minimal (manual) preparation. The PRISTINE ultraclean sampling system was used for the first time during the GA02 GEOTRACES cruises in the West Atlantic Ocean (2010-2012). During 60 full ocean depth stations all 24 samplers closed with a 100% success rate. Sampling proved to be much faster, less labor intensive, and ultraclean. A comparison of salinity, temperature, nutrient and oxygen data collected with the rectangular titanium frame with PRISTINE samplers and a traditional CTD frame with Niskin samplers showed that the CTD systems functioned equally well, that the PRISTINE samplers took discrete seawater samples without any inward leakage of seawater during the up-cast, and that no atmospheric oxygen contaminated the seawater samples in the PRISTINE samplers after return on deck. The excellent agreement between 13 trace elements sampled with PRISTINE and sampled during the cross over occupation of US-GEOTRACES at the Bermuda BATS site (32 degrees N, 64 degrees W) shows its suitability for ultraclean trace element and isotope sampling (see accompanying paper). (C) 2015 Elsevier B.V. All rights reserved

    Changes in iron speciation following a Saharan dust event in the tropical North Atlantic Ocean

    No full text
    Concentrations of dissolved iron (DFe) and Fe-binding ligands were determined in the tropical Northeast Atlantic Ocean (12–30°N, 21–29°W) as part of the UK-SOLAS (Surface Ocean Lower Atmosphere Study) cruise Poseidon 332 (P332) in January–February 2006. The surface water DFe concentrations varied between 0.1 and 0.4 nM with an average of 0.22 ± 0.05 nM (n = 159). The surface water concentrations of total Fe-binding ligands varied between 0.82 and 1.46 nM with an average of 1.11 ± 0.14 nM (n = 33). The concentration of uncomplexed Fe-binding ligands varied between 0.64 and 1.35 nM with an average of 0.90 ± 0.14 nM (n = 33). Thus, on average 81% of the total Fe-binding ligand concentration was uncomplexed. The average logarithmic conditional stability constant of the pool of Fe-binding ligands was 22.85 ± 0.38 with respect to Fe3+ (n = 33). A transect (12°N, 26°W to 16°N, 25.3°W) was sailed during a small Saharan dust event and repeated a week later. Following the dust event, the concentration of DFe increased from 0.20 ± 0.026 nM (n = 125) to 0.25 ± 0.028 (n = 17) and the concentration of free Fe-binding ligands decreased from 1.15 ± 0.15 (n = 4) to 0.89 ± 0.10 (n = 4) nM. Furthermore, the logarithmic stability constants of the Fe-binding ligands south of the Cape Verde islands were distinctively lower than north of the islands. The absence of a change in the logarithmic stability constant after the dust event south of the Cape Verde islands suggests that there was no significant atmospheric input of new Fe-binding ligands during this dust event

    The Transpolar Drift as a Source of Riverine and Shelf‐Derived Trace Elements to the Central Arctic Ocean

    No full text

    The GEOTRACES Intermediate Data Product 2017

    No full text
    Unidad de excelencia María de Maeztu MdM-2015-0552The GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the previous IDP2014. For the first time, the IDP2017 contains data for a large suite of biogeochemical parameters as well as aerosol and rain data characterising atmospheric trace element and isotope (TEI) sources. The TEI data in the IDP2017 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at crossover stations. The IDP2017 consists of two parts: (1) a compilation of digital data for more than 450 TEIs as well as standard hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing an on-line atlas that includes more than 590 section plots and 130 animated 3D scenes. The digital data are provided in several formats, including ASCII, Excel spreadsheet, netCDF, and Ocean Data View collection. Users can download the full data packages or make their own custom selections with a new on-line data extraction service. In addition to the actual data values, the IDP2017 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering and for statistical analysis. Metadata about data originators, analytical methods and original publications related to the data are linked in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2017 as section plots and rotating 3D scenes. The basin-wide 3D scenes combine data from many cruises and provide quick overviews of large-scale tracer distributions. These 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of tracer plumes near ocean margins or along ridges. The IDP2017 is the result of a truly international effort involving 326 researchers from 25 countries. This publication provides the critical reference for unpublished data, as well as for studies that make use of a large cross-section of data from the IDP2017. This article is part of a special issue entitled: Conway GEOTRACES - edited by Tim M. Conway, Tristan Horner, Yves Plancherel, and Aridane G. González
    corecore