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Abstract  

Many trace elements like Mn, Fe, Co, Ni, Cu and Zn are essential for marine life, some trace 

elements are of concern as pollutants, e.g. Pb and Hg, while others, together with a diverse 

array of isotopes, are used to assess modern-ocean processes and the role of the ocean in past 

climate change. GEOTRACES is an international program that aims to measure the 

distribution of trace elements and isotopes throughout the world oceans to improve our 

understanding of their marine biogeochemical cycles. To contribute to GEOTRACES a new 
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sampler system was developed at NIOZ allowing efficient sampling of large volumes of 

seawater under ultraclean conditions. The 24 “PRISTINE” samplers each with a volume of 

24.4L are made of a high-purity polymer Polyvinylidene Fluoride (PVDF) and are opened 

and closed using a butterfly-valve closing mechanism. The samplers are mounted on an all-

titanium frame and deployed using a poly-aramide hydrowire (Super Aram) with internal 

power/signal conductors. Upon recovery the complete frame is immediately placed in its own 

clean-air laboratory unit. Samplers are (i) always closed when onboard, (ii) always mounted 

on the frame without the need for hand-carrying heavy samplers, and (iii) can be deployed 

again with minimal (manual) preparation. The PRISTINE ultraclean sampling system was 

used for the first time during the GA02 GEOTRACES cruises in the West Atlantic Ocean 

(2010-2012). During 60 full ocean depth stations all 24 samplers closed with a 100% success 

rate. Sampling proved to be much faster, less labor intensive, and ultraclean. A comparison of 

salinity, temperature, nutrient and oxygen data collected with the rectangular titanium frame 

with PRISTINE samplers and a traditional CTD frame with Niskin samplers showed that the 

CTD systems functioned equally well, that the PRISTINE samplers took discrete seawater 

samples without any inward leakage of seawater during the up-cast, and that no atmospheric 

oxygen contaminated the seawater samples in the PRISTINE samplers after return on deck. 

The excellent agreement between 13 trace elements sampled with PRISTINE and sampled 

during the cross over occupation of US-GEOTRACES at the Bermuda BATS site (32
o
N, 

64
o
W) shows it suitability for ultraclean trace element and isotope sampling (see 

accompanying paper).  

 

Introduction 

 Trace elements like Mn, Fe, Co, Ni, Cu and Zn are necessary constituents in many 

metabolic functions of marine organisms (de Baar and LaRoche, 2003; Morel and Price, 
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2003). Other trace elements like for example Pb and Hg are toxic. Trace elements play key 

roles in ocean ecosystem functioning, biological production, and the biogeochemical cycles of 

nutrients and carbon. Therefore, to understand the Earth’s system and how global climate 

change will affect this system, it is important to understand the marine biogeochemical cycles 

of these trace elements. In the sedimentary record, trace elements and their isotopes also form 

important tools to investigate environmental conditions and changes in the past. However, the 

large-scale oceanic distributions of these trace elements and isotopes in the modern oceans 

and the processes that govern their distributions are still poorly known. 

 The GEOTRACES project is an international project that aims to improve our 

understanding of biogeochemical cycles and large-scale distributions of trace elements and 

isotopes in the marine environment and establish the sensitivity of these distributions to 

changing environmental conditions (Henderson et al., 2007). The objective is to elucidate 

important biogeochemical processes, sources and sinks that determine the distributions of bio-

essential and other trace elements in the world oceans. Advances in clean sampling protocols 

and equipment as well as analytical techniques now allows for the high resolution sampling of 

a wide range of trace elements and isotopes along full depth transects across the world’s 

oceans. 

 To contribute to GEOTRACES, a new sampler system “TITAN” was developed at NIOZ 

in 2005 allowing efficient sampling of seawater under ultraclean conditions (de Baar et al., 

2008). A rectangular shaped all-titanium frame was developed and fitted with a CTD system 

in a titanium housing and 24 conventional newly purchased GO-FLO samplers of 12 L 

volume each. To guarantee trace metal clean sampling each GO-FLO sampler was coated 

internally with Teflon. The use of GO-FLO samplers (General Oceanics) made of PVC and 

internally coated with Teflon has been an accepted method for trace metal clean sampling 

ever since its first application more than 30 years ago (Bruland et al., 1979). To reduce the 
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risk of contamination the GO-FLO samplers stayed closed while on board and only opened 

after deployment at 20 m depth. After recovery, the complete TITAN frame was immediately 

placed inside a clean-air laboratory unit for sub-sampling and remained there until its next 

deployment. This complete system has been used successfully during several cruises in the 

Arctic, Antarctic and Northeast Atlantic Ocean with a total of 113 full depth casts. The system 

proved clean to sample for dissolved Fe (Klunder et al., 2014), the organic complexation of 

Fe (Thuróczy et al., 2011), dissolved Al (Middag et al., 2009), dissolved Mn (Middag et al., 

2013), dissolved Zn (Croot et al., 2011), the organic speciation of Zn (Baars and Croot, 2011), 

dissolved Cd (Baars et al., 2014) and the stable isotopes composition of dissolved Cd 

(Abouchami et al., 2011; Abouchami et al., 2014; Xue et al., 2013) and Zn (Zhao et al., 2014). 

 To allow the clean sampling of larger volumes of seawater for a whole suite of trace 

elements and their stable isotopes, a new sampler system was developed at NIOZ in 2010. 

The TITAN frame is now fitted with 24 “PRISTINE” samplers each with a volume of 24.4L. 

When designing the new PRISTINE samplers, all drawbacks from the existing GO-FLO 

samplers were dealt with and eliminated. The PRISTINE samplers are made from intrinsically 

clean PVDF whereas GO-FLO samplers are made of Teflon coated PVC. The PRISTINE 

samplers do not require an internal pre-cleaning step with dilute acid as sometimes performed 

with GO-FLO samplers. The PRISTINE samplers use a butterfly valve system allowing a 

large opening at the top and bottom whereas the GO-FLO bottle open and close using a small 

rotating ball-valve system. The butterfly valve system ensures better flushing, the secure and 

reliable closing of the samplers, and the use of a seawater filled hydraulic closure system 

versus stainless steel springs. Furthermore, the PRISTINE samplers have no dead spaces and 

can be fully drained, thus preventing any risk of missing any sedimented particulate fraction. 

Finally, the PRISTINE samplers can be prepared for deployment without handling them in 

less than 3 minutes, versus at least half an hour of full human contact labor with the GO-FLO 
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bottles. 

 The TITAN frame fitted with the PRISTINE samplers has now been successfully used 

during 8 research cruises along the whole West Atlantic Ocean, in the Mediterranean Sea and 

the Black Sea, totaling over 130 full depth hydrocasts. In this article we present the 

PRISTINE samplers and use some of the data from the West Atlantic Ocean to show its 

suitability for large scale trace metal clean sampling of large volumes of seawater. An 

accompanying article shows in a more extensive way that this trace metal clean sampling 

system has been successfully involved in the intercomparison of a suite of 13 trace elements 

sampled during a cross-over station at BATS between the Dutch GA02 GEOTRACES cruise 

in 2010 and the US GA03 GEOTRACES cruise in 2011 (Middag et al., this issue).   

 

Materials and methods 

 

The PRISTINE samplers  

Materials of the PRISTINE sampler 

 All metal parts of the PRISTINE samplers are made of unalloyed (pure) grade 2 Ti. The 

rationale for using Ti which is also used in the TITAN frame (de Baar et al., 2008) is that Ti is 

a relatively inert metal that withstands corrosion in the seawater environment. It is also 

relatively easy to shape Ti into custom-made products. We did consider graphite-epoxy 

(carbon fibre) as it is the least corrosive in the galvanic series, but this is only economical for 

production in series using costly molds. The use of metals like aluminum (Al), chromium (Cr), 

manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), silver (Ag), 

cadmium (Cd), tin (Sn), platinum (Pt), mercury (Hg) and lead (Pb) was avoided as these are 

the metals we are interested in to measure in the marine environment and would therefore 

form a contamination risk. An external coating to separate the parts made of these metals from 
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the seawater could be applied, however, coatings tend to get physical damage or cracks or 

may be porous. Moreover, seawater is corrosive to many metals and corrosion may occur 

invisible under the coating. Although Ti is also a trace element of interest in the oceans, it is 

shown that there is no detectable Ti contamination from the PRISTINE samplers or from the 

Titan frame (Middag et al., this issue). 

 The large volume PRISTINE samplers are made of the polymer Polyvinylidene Fluoride 

(PVDF). Ultra-high purity grade PVDF is produced in a clean room environment by Georg 

Fischer Piping Systems (Herzogenburg, Austria) and available under the commercial brand 

name SYGEF
®
 Plus. Major customers are the semi-conductor and the pharmaceutical industry, 

both requiring high purity production processes. The PVDF is free of additives, pigments or 

stabilizers and has a white opaque appearance. We chose to use PVDF because low purity 

plastics contain almost all of the trace metals of interest as either impurities or sometimes 

intentionally as a catalyst or stabilizer in the production process. For example, Cd is used as a 

catalyst in many plastics and Al is sometimes used as a catalyst in the production of 

polyethylene, whereas Sn is used as a stabilizer in PVC. Coating low purity PVC with Teflon 

spray has been the practice for GO-FLO samplers or lever-action type Niskin or Niskin-X 

samplers. However, also here cracks or porosity in the coating may expose the underlying low 

purity PVC. 

 

Construction and operation of the PRISTINE sampler 

 The samplers are designed in a way that once the sampler is closed, the seawater sample is 

only in contact with the high purity PVDF, the two flat silicone O-rings and the 

polytetrafluoroethylene (PTFE, Teflon) of the two small valves for draining (lower) and 

inlet (upper) of N2 gas. To construct the PRISTINE samplers, PVDF piping with a length of 

1080 mm, an external diameter of 180 mm and an internal diameter 162 mm was used (Figure 
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1). PVDF sheets with a thickness of 60 mm were used to construct two end-pieces that were 

hot plate welded on both ends of the straight pipe, together forming the main body of the 

sampler (Figure 1). Note that each end-piece has an internal 135
o
 angle ring surface extending 

7 mm inwards that serves as the resting surface for the round, flat silicone O-ring in the 

closing lid to completely seal the closed sampler (Figure 1). Furthermore, there are two 

external extensions (Figure 1). One extension is used to attach 2 titanium levers and the 

actuating cylinder used to drive the third central Ti lever. The second extension is to 

implement the small PTFE valve to drain the bottle for sample or pressurize the bottle with N2 

gas. The bottom PTFE draining valve is positioned in such a way that the sampler can be 

completely drained. Furthermore, two PVDF mounting rings are fitted on the outside around 

the sampler body just above and just below the lower and upper end-pieces to fix the 

PRISTINE sampler to the titanium frame using Ti bolts.   

 The lids are also cut from 60 mm PVDF sheets. Each round lid has a groove around its 

circumference in which a flat sealing ring is placed which is cut from silicone elastomer 

(polysiloxane) (Figure 1). We chose a flat silicone ring because a flat ring adjusts to 

unconformities as small dents or imperfections in the roundness of the sampler body while 

still maintaining a reliable seal. The samplers are closed while on board and during 

deployment through the ocean surface. At 5-10 m depth the lids start to open automatically, 

using the outside water pressure as a driving force. Because the bottom lids on each sampler 

experience a 0.13 Bar higher pressure to open than the top lids, the bottom lids always open 

first. As water rushes in from below, the air inside the sampler compresses until it is in 

equilibrium with the local water pressure. This creates a relative overpressure of 0.055 Bar 

which pushes against the inside of the upper lid, thus preventing it from opening. A vent 

valve in the rectangular extension block on the top lid operated by the titanium lever vents off 

this air (Figure 2), after which the upper lids also open. 
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 The expansion of the sampled trapped water when ascending in the water column results in 

an overpressure of approximately 0.5-1 Bar. At that point the internal overpressure in the 

sampler is enough to open the top lid over-pressure valve and release pressure by allowing 

water to leave the sampler (Figure 2). The overpressure of 0.5-1 Bar also pushes both lids 

outwards by some 3mm into what becomes their final positions against the 135
o
 ring surface 

of the end-piece. On the outside of the lid, a rectangular 25 mm high and 20 mm thick 

extension block is fitted, to which 3 Ti levers are attached using small Ti pivoting rods (Figure 

2). The central Ti lever contains a slit to allow the lever to bend under tension (Figure 2). This 

built in spring action of the lever serves both to facilitate the 3 mm displacement of the lids 

while moving into their final positions and meanwhile to still keep exerting an outward 

pulling force on these lids. On the other end, the Ti levers are connected to two PVDF 

actuating cylinders mounted on the outside of the top and bottom of the sampler. These 

cylinders are part of the hydraulic system used to open and close the samplers (Figure 2). The 

central Ti lever connects via a Ti vertical rod to the piston in the actuating cylinder. The 

overall configuration allows the valve lid to completely open under a 90
o
 angle. Taking into 

account (i) the cross-sectional surface area of the open lid, (ii) the 3 titanium levers attached 

to the extension block, (iii) the top lid over-pressure valve, and (iv) the 7 mm width of the 

135
o
 angled ring, the top and bottom plane of the samplers are 78% open. The PRISTINE 

sampler will therefore be more effectively flushed during deployment than the traditional GO-

FLO sampler with a 34% open cross sectional surface area. 

 

The hydraulics system of the PRISTINE sampler 

 The hydraulic system to open and close the PRISTINE samplers is completely autonomous 

and powered by differences in pressure in the water column. It consists of six parts: i) two 

small PVDF actuating cylinders with internal pistons (attached to the PRISTINE samplers), 
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ii) two 175 mm diameter PVDF seawater inlets with filters to prevent particles to enter the 

hydraulics system (on top of the frame), iii) the multivalve unit  to control the closing of the 

PRISTINE samplers (de Baar et al., 2008) (in the lower part of the frame), and iv) the 

pressure accumulator vessel to provide the hydraulic pressure (on the side of the frame) 

(Figure 3 and 4). The multivalve unit is constructed of poly-oxy-methylene-copolymer (POM-

C also known as polyacetal; commercial name Celcon of Celanese Corp.) and contains a 

titanium enclosed drive motor. The pressure accumulator vessel is constructed of POM-C and 

contains an internal piston and large stainless steel spring. Note: this stainless steel spring is 

only in contact with the seawater inside the hydraulics system and not with the environment.  

All parts of the hydraulic system are connected by polyamide tubing (8 x 1 mm; EATON 

SYNFLEX DIN 73378) and T-joints. 

  

During deployment, the spring in the pressure accumulator vessel gets charged and the 

pressure accumulator vessel fills with water. Therefore, to prepare the sampling system for 

deployment the spring in the pressure accumulator vessel needs to be released. The spring 

gets automatically released by pushing a valve on top of the pressure accumulator vessel 

which drains the water in the vessel (Figure 4). This allows the spring to push the piston to the 

top of the pressure accumulator vessel. After that one only needs to close two release plugs in 

the bottom of the pressure accumulator vessel by pushing them in. Now the system is ready 

for deployment without having to touch any sampler. 

 The system is deployed into the ocean and at 5-10 m depth, the seawater pressure reaches 

0.5-1 Bar. This pressure allows seawater entering the system via the seawater inlet on top of 

the frame to push on the pistons in the actuating cylinders on the PRISTINE samplers, thus 

opening the lids of the 24 sample bottles. When the pistons of the actuating cylinder reach 

their maximum positions, the increasing outside seawater pressure (with increasing depth) 

allows seawater to leak past the lip-seals on the pistons. Passing the lip-seals, the water flows 
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via the tubing to the multivalve, where a one-way valve allows the water to pass and flow to 

the pressure accumulator vessel. The pressure accumulator vessel fills up with seawater, 

simultaneously pushing the piston downwards and charging the internal spring. At 3 Bar 

overpressure (~30m depth) the spring is fully compressed and a plastic pipe around the spring 

will hit the two release plugs that are pushed open, initiating the inflow of seawater from 

below. This creates equal pressure on both sides of the piston, enabling the spring to create an 

over pressure of about 2 Bar above the piston.  

 This 2 Bar over-pressure powers the hydraulic system that closes the lids of the PRISTINE 

samplers during the up-cast. During the up-cast, at the target depths, PRISTINE samplers are 

closed in sequence by triggering the multivalve. The multivalve opens the pathway between 

the pressure accumulator vessel (2 Bar) and the actuating cylinders of the targeted PRISTINE 

sampler by opening the lever controlled one-way valve for about 8 seconds. This allows 

seawater to flow on top of the piston in the actuating cylinder thereby pushing the piston 

downwards and closing the top and bottom lids of the PRISTINE sampler. Small flow 

restrictions introduced into the top lid hydraulic tubing guarantees that the lower lid always 

closes first. As a result, the lower lid gets enough time to reach its outermost position, before 

the upper lid closes too. While closing the lids, the driving force on the actuator cylinders also 

charges the central titanium lever to its maximum bent position. This 'spring' action will keep 

exerting an outward pulling force on the lids, thus ensuring them reaching their final positions 

while the system ascends. The multivalve opens the pathway to the targeted PRISTINE 

sampler for only 8 seconds to prevent complete depletion of the pressure accumulator vessel 

reservoir in case one of the individual sampler closure systems should leak, thereby 

safeguarding the closure of any subsequent samplers. It also prevents samplers that do not 

close at the targeted depth to close at another depth thereby increasing the integrity of each 

sample. 
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 When the CTD system rises further through the water column the outside pressure   

decreases. A vent valve in the top lid releases the internal over-pressure maintaining a relative 

overpressure of +0.5-1 Bar. The one-way valve in the multivalve maintains an over-pressure 

of 2 Bar in the tubing and steering cylinder of the closed PRISTINE samplers. At the next 

target depth the whole procedure is repeated. It is essential to start sampling at the deepest 

point in the water column. The pressure accumulator vessel contains enough volume of 

seawater (6.3 L) to equal the volume in the steering cylinders of the 24 sample bottles three 

times over (total volume of 2.1 L). 

 

The titanium frame, CTD package and PRISTINE samplers - deployment 

 To prevent contamination of the trace metal samples, the PRISTINE samplers are mounted 

on a titanium frame (NIOZ Marine Technology Department) and deployed using a Super 

Aram hydrowire (Cousin Trestec, France). Most components of the CTD suite are housed in 

several titanium canisters (Table 1). The Super Aram hydrowire cable is around 9500 m long, 

has a diameter of 20 mm and contains 6 internal copper signal/conductor cables and 1 gel 

filled stainless steel tube with 4 single mode optic fibres (not used in this set-up). The Super 

Aram is protected on the outside by an Arnitel plastic jacket. 

 To prepare for deployment, the only action required is the insertion of two plugs in the 

bottom of the pressure accumulator vessel, and the release of the remaining seawater atop the 

internal piston, via the release valve on top of the pressure accumulator vessel. After that, 

deployment of the titanium CTD system with PRISTINE samplers is the same as described by 

de Baar et al. (2008). In short, the titanium CTD frame has four wheels used to  push the 

frame out  of the clean-air unit onto an aluminum frame on top of a hand forklift. Next, the 

complete assembly is pushed over the ship's deck to the launching site. From there the frame 

is lifted over the side and lowered into the sea. At ~30 m depth all 24 x 2 lids of the samplers 
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have opened automatically. The complete frame with the open PRISTINE samplers is lowered 

at a rate of 1.0 m s
-1

 and slower at 0.3 m s
-1

 across steep gradients (e.g. thermocline). 

Continuous flushing with seawater further cleans the inside of the PRISTINE samplers. The 

system is typically lowered down until about 20 to 50 m above the sea floor. The hauling rate 

during the up-cast can be up to 1.6 m s
-1

, depending on the weather and sea state. During the 

up-cast, hauling is stopped at each target depth and left for ~60 seconds to allow a full 

flushing of the sampler with target seawater before the sampler is closed. The individual 

PRISTINE samplers are closed by triggering the motor of the multivalve via the CTD-

communication over the hydrowire, just as in a regular CTD-rosette system. Upon return at 

the sea surface all 24 samplers are firmly closed and the complete frame is taken out of the 

water. The frame is stabilized using 2 plastic ropes hooked at both sides of the frame before 

hoisting it carefully back onboard. The frame is lowered and fixed on top of the aluminum 

frame on the hand forklift. The whole system is then pushed inside the clean-air container and 

fixed with Ti clamps to the floor of the unit. 

 Once the exterior door and the interior door are closed, the clean-air circulation is turned 

on and the team of analysts dress in clean room clothing including Nitrile gloves. Sub-

sampling starts after 5 minutes  when the counts of aerosol particles are below requirement as 

has been shown by tests as described in (de Baar et al., 2008). 

 

Measurements 

Salinity, temperature, nutrients, oxygen, DFe and DAl measurements 

We measured salinity, temperature, nutrients, oxygen, dissolved iron (DFe) and 

dissolved aluminum (DAl) during a test cruise (64PE318) and four cruises in the West 

Atlantic Ocean (64PE319, 64PE321, 64PE358 and 74JC057) to show the performance of the 

titanium frame with PRISTINE samplers and CTD system for oceanographic research and 
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trace metal clean sampling. Salinities were determined using a SBE3plus thermometer and a 

SBE4 conductivity sensor. Salinity of discrete seawater samples were analyzed on board with 

a Guildline 8400B Autosal using a P-Series IAPSO Standard Seawater (OSIL, batch P149) to 

calibrate the salinity measurements of the CTD sensors. The temperature sensor was 

calibrated against a SBE-35 reference thermometer. The downcast CTD data were binned 

over a 1m interval. Nitrate, phosphate and silicate were determined colorimetrically 

(Grasshoff et al., 1983) on a SEAL QuAAtro gas-segmented continous flow auto-analyser 

during 64PE319, 64PE321 and 64PE358 and on a Bran & Luebbe TrAAcs 800 auto-anlyser 

during 74JC057. Unfiltered samples were taken from each bottle at each station and analysed 

on board within 8-12 hours. A natural, sterilized, reference nutrient sample (Kanso, Lot code 

AX) containing a known concentration of silicate, phosphate, nitrate and nitrite in Pacific 

Ocean water, was analyzed in triplicate during every run (Table 2). The reproducibility was 

typically around 0.6% of the average value for silicate, phosphate and nitrate. There was no 

significant difference between the shipboard measured values of Kanso and the inter-

comparison consensus values and therefore, the final sample values were not corrected. 

Oxygen concentrations were measured using Winkler titrations. The determination of the 

volumetric dissolved oxygen concentration of water samples was performed colorimetrically 

by measuring the absorbance of iodine at 460nm on a Hitachi U-1100 Spectrophotometer (Pai 

et al., 1993). DAl was measured on board using flow injection analysis (FIA) based on a 

lumogallion fluorometric method (Middag et al., 2011). DFe was measured on board using 

FIA based on luminol chemiluminescence (Klunder et al., 2011). For both the analysis of DFe 

and DAl, GEOTRACES and SAFE reference samples were used confirming accurate analysis. 

The results of the analysis of the reference samples and their consensus values are reported 

elsewhere (Middag et al., 2015; Rijkenberg et al., 2014).  
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Results and discussion 

 The closure rate of all 24 PRISTINE samplers during more than 60 deep hydrocasts in the 

West Atlantic Ocean was 100%, resulting in over 1440 seawater samples from discrete depths. 

This reliability was confirmed in the 2013 Mediterranean and Black Seas program sampling 

76 hydrocasts collecting 1824 samples. Using the PRISTINE samplers on a titanium frame 

that is transported into a clean-air laboratory unit after recovery saves a lot of time, i.e. bottles 

do not have to be taken off and returned to the frame and hand-carrying each heavy sampler 

to and from a clean room is no longer required either. In addition, preparing the system for 

deployment takes only a couple of minutes as the only actions needed are the manual 

insertion of two plugs in the pressure accumulator vessel and to press on the release valve on 

its top. Obviously, the minimal handling is beneficial for cleanliness as well. 

 We did an intercomparison of the rectangular ultraclean CTD frame with PRISTINE 

samplers (UCC) and a conventional rosette CTD system with 25L Niskin bottles (ROS) along 

the West Atlantic transect where we compared CTD sensor data and discrete seawater 

samples. For both CTD systems salinity and temperature were measured by a SBE-9plus 

underwater-unit. To prevent a delay in the measurement of the salinity and temperature with 

depth during the downcast, seawater is pumped through the sensor-unit. We took the 1 m 

binned salinity and temperature data of the downcast CTD from both the UCC and the ROS at 

the same stations and depths and independently calibrated and plotted the ratios 

UCCsal:ROSsal and UCCtemp:ROStemp in boxplots (Figure 5a,b). We did the same for 

UCC:UCC and ROS:ROS at stations where more than one cast was performed with each 

CTD system to compare for environmental variability. The median of the UCC:ROS ratio of 

salinity and temperature were both close to 1 and compared well with the median of the 

UCC:UCC and ROS:ROS of salinity and temperature. This confirms that the ultraclean CTD 

frame with PRISTINE samplers is providing high quality CTD data.  
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 Nutrient measurements give a good indication to whether bottles were closed at the right 

depth and if samples were affected by seawater leakage on the way up through the water 

column. For this reason, nutrients were routinely sampled from the UCC and the ROS at each 

station. The UCC:ROS ratio of the nutrients phosphate, nitrate and silicate sampled at the 

same stations and depths all show median values close to 1 (Figure 5c). This indicates that 

both the PRISTINE and ROS samplers close very well, i.e. once closed there is no 

contamination due to leakage/exchange with ambient seawater during the up-cast. 

 Seawater samples taken from the UCC and ROS for the measurement of oxygen show that 

there is no oxygen exchange between the atmosphere and the seawater inside the PRISTINE 

samplers (Figure 6). Since only a few seawater samples for oxygen measurements were taken 

during the casts for calibration of the CTD oxygen sensors, we only have six data points 

where samples were taken at the same station and depth from both CTD systems. A linear 

regression through these few data points shows a slope of 1.02 which is very close to 1 

considering a standard deviation of 0.85 µM over 20 replicate oxygen measurements. There is 

a small offset with oxygen concentrations of 4.45 µM with higher oxygen concentrations in 

the UCC compared to the ROS. However, this offset may disappear when having more data 

points over a larger oxygen gradient. If the PRISTINE samplers would not be gas tight we 

would have expected a slope less close to 1 with more scatter in the data points.  

  To investigate if the PRISTINE samplers  are  trace metal clean we  performed a test 

station N-E of Scotland (60° 6' 0.356''N, 5° 47' 38.76''W) during cruise 64PE318 on RV 

Pelagia (Gerringa, 2010). We closed all 24 PRISTINE samplers at the same depth near the 

bottom at 1015 m. The concentrations of DAl were similar in all 24 bottles with an average 

concentration of 17.41 ± 0.22 nM (Figure 7a). The concentrations of DFe were very similar in 

22 out of 24 bottles with an average concentration of 1.029 ± 0.045 nM (bottles 2 & 18 

excluded) (Figure 7b). Since this was the very first time that the PRISTINE samplers were 
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used bottles 2 and 18 were apparently not yet entirely clean. Further rinsing of the PRISTINE 

bottles during subsequent casts removed the contamination from bottles 2 and 18. Overall, 

this test clearly showed that the PRISTINE samplers are suited for trace metal clean sampling. 

Additionally, at the Bermuda BATS site (32°N, 64°W), results of our sampling  on 13
th

 of 

June 2010 show excellent agreement with the crossover occupation on November 19, 2011 by 

the US GEOTRACES cruise for 13 trace elements as described in the accompanying article of 

Middag et al. (this issue). Data have been successfully collected (and published) for 

contamination prone elements like Fe (Rijkenberg et al., 2014), Al (Bruland et al., 2014; 

Middag et al., 2015; van Hulten et al., 2013), Hg (Lamborg et al., 2014), Co (Dulaquais et al., 

2014) and the organic complexation of Fe (Gerringa et al., 2015). This confirms that the 

intended ultraclean performance of the PRISTINE samplers is excellent. 

 

Conclusions 

 The PRISTINE samplers have been extensively used during 4 research cruises in the 

West Atlantic Ocean (2010-2012). The closing success of all 24 PRISTINE samplers during 

the more than 60 deep hydrocasts was 100% resulting in over 1440 seawater samples from 

discrete depths. Using CTD data from the West Atlantic cruises we show that the UCC CTD 

data are as good as the ROS CTD data. Investigating the nutrient values between samples 

taken from the UCC and ROS we conclude that no leakage of the PRISTINE samplers 

occurred during the up-cast and that therefore samples were indeed from the intended discrete 

depths. Furthermore, comparing measured oxygen concentrations in seawater samples taken 

from the UCC and ROS at the same stations and depths show that the PRISTINE samplers are 

gas tight. Contamination of the seawater samples in the PRISTINE samplers is avoided by 

keeping samplers always closed when on board. By using the PRISTINE samplers, we 

completed the GEOTRACES West Atlantic Ocean cruise successfully, determining the 
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distribution of a range of contamination prone trace metals along a transect with a length of 

17500 km. Overall, the PRISTINE samplers are easy to use, they provide larger sample 

volumes, they have a 100% successful closing rate, and their rapid deployment and operation 

saves ship time. Additionally, there was an excellent agreement of the hydrographic 

parameters and the major nutrients between the two distinct sampling systems. This all 

confirms that the new PRISTINE samplers meet the intended requirements.  
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Table 1. The CTD instruments and their housing materials. 

CTD instrument   Housing material   

Optical BackScatter (OBS) unit made of rigid polyurethane 

SBE3 thermometer   titanium housing   

SBE4 thermometer   titanium housing   

SBE-5 underwater pump titanium housing   

SBE-9plus underwater-unit titanium housing   

SBE-43 DO-sensor   titanium housing   

C-Star Transmissometer  anodized aluminum  

  

 

  covered with heatshrink plastic 

Chelsea M-III fluorometer titanium housing   

Satlantic PAR-sensor   titanium housing   

Bottom switch   titanium housing   

 

Table 2. The reference material for nutrients is filtered deep Pacific Ocean seawater (Lot code 

AX, The General Environment Technos Co., Osaka, Japan). The consensus values are the 

mean values resulting from an intercomparison exercise of 69 laboratories of the Kanso 

reference nutrient sample in 2012 (Aoyama and others, 2014). 

  Shipboard value Consensus value 

  (µmol/kg) (µmol/kg) 

Silicic acid 59.08 59.41 (n=51) 

Nitrate 21.69 21.62 (n=44) 

Phosphate 1.60 01.62 (n=48) 
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Figure 1. A schematic drawing and a photograph of a PRISTINE sampler showing the lids (1), 

the titanium levers (2), and the small PVDF external steering cylinders with internal pistons 

used to open and close the sampler (3). The ring-shaped top and bottom PVDF end-pieces are 

welded to the central PVDF pipe (4). The flat silicone O-ring in the closing lids (5). The 135° 

angled edge at the inside of end-piece, which serves as the resting surface for the round, flat 

silicone O-ring in the closing lid (6). Two extensions on the bottom and top end-piece each 

are used to attach the titanium levers and the steering cylinder to open and close the lids (7) 

and to attach a small PTFE valve to drain the bottle for sample and pressurize the bottle with 

N2 gas (8). Furthermore, two PVDF mounting rings are fitted on the outside around the 

sampler body to fix the PRISTINE sampler to the titanium frame using Ti bolts (9). Lengths 

are in millimeters. 

 

Figure 2.  Schematic drawing of the opening and closing of the samplers by the small PVDF 

external actuating cylinders with internal pistons (1). On the outside of the lid a rectangular 

extension block is fitted, with 3 Ti levers attached using small Ti pivoting rods (2). The top lid 

contains a vent valve in the rectangular extension block allowing the release of trapped air 

when opening the lids at 5-10 meters below the surface (3). The central Ti lever connects via a 

Ti vertical rod to the piston in the PVDF cylinder (4). The top lid over-pressure valve 

allowing water to leave the sampler at 0.5-1 Bar relative overpressure (5). Top: lid is 

completely closed; middle: halfway open; bottom: completely opened. Here the effective 

opening for flushing is 78% of the cross sectional area defined by the 162 mm internal 

diameter of the main pipe. 

 

Figure 3. The titanium frame with the CTD system and the PRISTINE samplers. The two 

seawater inlets for the hydraulic system are on top of the frame on both sides of the central 
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connection of the hydrowire. Each inlet serves 12 samplers (1). The multivalve system is 

located on the bottom of the frame (2), the pressure accumulator vessel hangs on the side of 

the frame (3), and the CTD system is implemented on the bottom of the frame (4). 

 

Figure 4. Schematic drawing of the hydraulic system that opens and closes the lids of the 

PRISTINE samplers. The lids are always closed when on board. After deployment, the lids 

start to open at 5-10 m depth. The lids are closed again during the up-cast to collect samples. 

The hydraulic system consists of the two small PVDF actuating cylinders with internal 

pistons fixed to the PRISTINE samplers (1), two PVDF seawater inlets with filters (2), the 

multivalve unit (3), and the pressure accumulator vessel to provide the hydraulic pressure (4). 

The stainless steel spring (5) in the pressure accumulator vessel provides the hydraulic power. 

The spring is released pressing a valve (6) in the top. Further preparing of the system for a 

new deployment only requires two release plugs (7) in the bottom of the pressure accumulator 

vessel to be closed again. The blue arrows (thin arrows) represent the draining of the pressure 

accumulator vessel after opening of the valve on top of the pressure accumulator vessel before 

deployment (the lids are closed and stay closed). The green arrows (fatter arrows) represent 

the pressurizing of the pressure accumulator vessel with increasing depth (the lids are 

opening). Seawater passes the lip-seals (8) and flows via the one-way valve (9) in the 

multivalve to the pressure accumulator vessel. Purple arrows (fattest arrows) represent the 

seawater flow when the lids of the PRISTINE samplers are closed. Triggering the multivalve 

opens the one-way valve to one of the samplers pressurizing the actuating cylinders and 

closing the lids. 

 

Figure 5. a) Boxplot showing the ratio in salinity binned per meter measured by the UCC 

CTD system and the ROS CTD system as well as between multiple casts of the same CTD 
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systems at the same stations and depths. b) Boxplot showing the ratio in temperature 

measured by the UCC CTD system and the ROS CTD system as well as between multiple 

casts of the same CTD systems at the same stations and depths. c)  Boxplot showing the ratio 

in the nutrients phosphate, nitrate and silicate concentrations as sampled from the UCC and 

the ROS. Median values are indicated by a horizontal line within the box, the box represents 

the inter-quartile range, the whiskers extend to the 5th and 95th percentile values, outliers are 

not shown and n indicates the amount of data points included. 

 

Figure 6. Oxygen concentrations measured by Winkler titration in discrete samples taken 

from the UCC and ROS at the same stations and depths.  

 

Figure 7. a.) DAl and b.) DFe concentrations measured in all 24 bottles closed at 1015 m 

depth at the test station N-E of Scotland (60° 6' 0.356''N, 5° 47' 38.76''W) during cruise 

64PE318 on RV Pelagia.  
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