8 research outputs found

    Contrasting Roles for TLR Ligands in HIV-1 Pathogenesis

    Get PDF
    The first line of a host's response to various pathogens is triggered by their engagement of cellular pattern recognition receptors (PRRs). Binding of microbial ligands to these receptors leads to the induction of a variety of cellular factors that alter intracellular and extracellular environment and interfere directly or indirectly with the life cycle of the triggering pathogen. Such changes may also affect any coinfecting microbe. Using ligands to Toll-like receptors (TLRs) 5 and 9, we examined their effect on human immunodeficiency virus (HIV)-1 replication in lymphoid tissue ex vivo. We found marked differences in the outcomes of such treatment. While flagellin (TLR5 agonist) treatment enhanced replication of CC chemokine receptor 5 (CCR 5)-tropic and CXC chemokine receptor 4 (CXCR4)-tropic HIV-1, treatment with oligodeoxynucleotide (ODN) M362 (TLR9 agonist) suppressed both viral variants. The differential effects of these TLR ligands on HIV-1 replication correlated with changes in production of CC chemokines CCL3, CCL4, CCL5, and of CXC chemokines CXCL10, and CXCL12 in the ligand-treated HIV-1-infected tissues. The nature and/or magnitude of these changes were dependent on the ligand as well as on the HIV-1 viral strain. Moreover, the tested ligands differed in their ability to induce cellular activation as evaluated by the expression of the cluster of differentiation markers (CD) 25, CD38, CD39, CD69, CD154, and human leukocyte antigen D related (HLA)-DR as well as of a cell proliferation marker, Ki67, and of CCR5. No significant effect of the ligand treatment was observed on apoptosis and cell death/loss in the treated lymphoid tissue ex vivo. Our results suggest that binding of microbial ligands to TLRs is one of the mechanisms that mediate interactions between coinfected microbes and HIV-1 in human tissues. Thus, the engagement of appropriate TLRs by microbial molecules or their mimetic might become a new strategy for HIV therapy or prevention

    Nucleotide-binding and oligomerization domain-like receptors and retinoic acid inducible gene-like receptors in human tonsillar T lymphocytes

    No full text
    Nucleotide-binding and oligomerization domain (NOD) -like receptors (NLRs) and retinoic acid-inducible gene (RIG) -like receptors (RLRs) are recently discovered cytosolic pattern-recognition receptors sensing mainly bacterial components and viral RNA, respectively. Their importance in various cells and disorders is becoming better understood, but their role in human tonsil-derived T lymphocytes remains to be elucidated. In this study, we evaluated expression and functional relevance of NLRs and RLRs in human tonsillar CD3+ T lymphocytes. Immunohistochemistry, real-time RT-PCR and flow cytometry revealed expression of NOD1, NOD2, NALP1, NALP3, NAIP, IPAF, RIG-1, MDA-5 and LGP-2 at mRNA and protein levels. Because of the limited number of ligands (iE-DAP, MDP, Alum, Poly(I:C)/LyoVec), functional evaluation was restricted to NOD1, NOD2, NALP3 and RIG-1/MDA-5, respectively. Stimulation with the agonists alone was not enough to induce activation but upon triggering via CD3 and CD28, a profound induction of proliferation was seen in purified CD3+ T cells. However, the proliferative response was not further enhanced by the cognate ligands. Nonetheless, in tonsillar mononuclear cells iE-DAP, MDP and Poly(I:C)/LyoVec were found to augment the CD3/CD28-induced proliferation of tonsillar mononuclear cells. Also, iE-DAP and MDP were found to promote secretion of interleukins 2 and 10 as well as to up-regulate CD69. This study demonstrates for the first time a broad range of NLRs and RLRs in human tonsillar T cells and that NOD1, NOD2 and RIG-1/MDA-5 act synergistically with αCD3 and αCD28 to induce proliferation of human T cells. Hence, these results suggest that these receptors have a role in T-cell activation
    corecore