298 research outputs found
Eureka and beyond: mining's impact on African urbanisation
This collection brings separate literatures on mining and urbanisation together at a time when both artisanal and large-scale mining are expanding in many African economies. While much has been written about contestation over land and mineral rights, the impact of mining on settlement, notably its catalytic and fluctuating effects on migration and urban growth, has been largely ignored. African nation-states’ urbanisation trends have shown considerable variation over the past half century. The current surge in ‘new’ mining countries and the slow-down in ‘old’ mining countries are generating some remarkable settlement patterns and welfare outcomes. Presently, the African continent is a laboratory of national mining experiences. This special issue on African mining and urbanisation encompasses a wide cross-section of country case studies: beginning with the historical experiences of mining in Southern Africa (South Africa, Zambia, Zimbabwe), followed by more recent mineralizing trends in comparatively new mineral-producing countries (Tanzania) and an established West African gold producer (Ghana), before turning to the influence of conflict minerals (Angola, the Democratic Republic of Congo and Sierra Leone)
Time-lapse geophysical assessment of agricultural practices on soil moisture dynamics
Geophysical surveys are now commonly used in agriculture for mapping applications. High-throughput collection of geophysical properties such as electrical conductivity (inverse of resistivity), can be used as a proxy for soil properties of interest (e.g. moisture, texture, salinity). Most applications only rely on a single geophysical survey at a given time. However, time-lapse geophysical surveys have greater capabilities to characterize the dynamics of the system, which is the focus of this work. Assessing the impact of agricultural practices through the growth season can reveal important information for the crop production. In this work, we demonstrate the use of time-lapse electrical resistivity tomography (ERT) and electromagnetic induction (EMI) surveys through a series of three case studies illustrating common agricultural practices (cover crops, compaction with irrigation, tillage with nitrogen fertilization). In the first case study, time-lapse EMI reveals the initial effect of cover crops on soil drying and the absence of effect on the subsequent main crop. In the second case study, compaction, leading to a shallower drying depth for potatoes was imaged by time-lapse ERT. In the third case study, larger change in electrical conductivity over time were observed in conventional tillage compared to direct drill using time-lapse EMI. In addition, different nitrogen application rates had significant effect on the yield and leaf area index but only ephemeral effects on the dynamics of electrical conductivity mainly after the first application. Overall, time-lapse geophysical surveys show great potential for monitoring the impact of different agricultural practices that can influence crop yield
Weber and church governance: religious practice and economic activity
The debate about the relationship between religion and economic activity in the wake of Weber has been cast largely in terms of belief and values. This article suggests an alternative focus on practice. It argues that taken for granted practices of church governance formed to-hand resources for the organization of economic activity. The argument is developed through an examination of the historical development of church governance practices in the Presbyterian Church of Scotland, with particular emphasis on the way in which theological belief gave rise to practices of accountability and record keeping. In turn such practices contributed to a ‘culture of organization’ which had implications for economic activity. A focus on governance practices can help to illuminate enduring patterns of difference in the organization of economic activity
Solar parameters for modeling interplanetary background
The goal of the Fully Online Datacenter of Ultraviolet Emissions (FONDUE)
Working Team of the International Space Science Institute in Bern, Switzerland,
was to establish a common calibration of various UV and EUV heliospheric
observations, both spectroscopic and photometric. Realization of this goal
required an up-to-date model of spatial distribution of neutral interstellar
hydrogen in the heliosphere, and to that end, a credible model of the radiation
pressure and ionization processes was needed. This chapter describes the solar
factors shaping the distribution of neutral interstellar H in the heliosphere.
Presented are the solar Lyman-alpha flux and the solar Lyman-alpha resonant
radiation pressure force acting on neutral H atoms in the heliosphere, solar
EUV radiation and the photoionization of heliospheric hydrogen, and their
evolution in time and the still hypothetical variation with heliolatitude.
Further, solar wind and its evolution with solar activity is presented in the
context of the charge exchange ionization of heliospheric hydrogen, and in the
context of dynamic pressure variations. Also the electron ionization and its
variation with time, heliolatitude, and solar distance is presented. After a
review of all of those topics, we present an interim model of solar wind and
the other solar factors based on up-to-date in situ and remote sensing
observations of solar wind. Results of this effort will further be utilised to
improve on the model of solar wind evolution, which will be an invaluable asset
in all heliospheric measurements, including, among others, the observations of
Energetic Neutral Atoms by the Interstellar Boundary Explorer (IBEX).Comment: Chapter 2 in the planned "Cross-Calibration of Past and Present Far
UV Spectra of Solar System Objects and the Heliosphere", ISSI Scientific
Report No 12, ed. R.M. Bonnet, E. Quemerais, M. Snow, Springe
Cost-Effectiveness Modeling of Surgery Plus Adjuvant Endocrine Therapy Versus Primary Endocrine Therapy Alone in UK Women Aged 70 and Over With Early Breast Cancer
Objectives: Approximately 20% of UK women aged 70+ with early breast cancer receive primary endocrine therapy (PET) instead of surgery. PET reduces surgical morbidity but with some survival decrement. To complement and utilize a treatment dependent prognostic model, we investigated the cost-effectiveness of surgery plus adjuvant therapies versus PET for women with varying health and fitness, identifying subgroups for which each treatment is cost-effective. Methods: Survival outcomes from a statistical model, and published data on recurrence, were combined with data from a large, multicenter, prospective cohort study of over 3400 UK women aged 70+ with early breast cancer and median 52-month follow-up, to populate a probabilistic economic model. This model evaluated the cost-effectiveness of surgery plus adjuvant therapies relative to PET for 24 illustrative subgroups: Age {70, 80, 90} × Nodal status {FALSE (F), TRUE (T)} × Comorbidity score {0, 1, 2, 3+}. Results: For a 70-year-old with no lymph node involvement and no comorbidities (70, F, 0), surgery plus adjuvant therapies was cheaper and more effective than PET. For other subgroups, surgery plus adjuvant therapies was more effective but more expensive. Surgery plus adjuvant therapies was not cost-effective for 4 of the 24 subgroups: (90, F, 2), (90, F, 3), (90, T, 2), (90, T, 3). Conclusion: From a UK perspective, surgery plus adjuvant therapies is clinically effective and cost-effective for most women aged 70+ with early breast cancer. Cost-effectiveness reduces with age and comorbidities, and for women over 90 with multiple comorbidities, there is little cost benefit and a negative impact on quality of life
Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment
LUX-ZEPLIN (LZ) is a next-generation dark matter direct detection experiment that will operate 4850 feet underground at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. Using a two-phase xenon detector with an active mass of 7 tonnes, LZ will search primarily for low-energy interactions with weakly interacting massive particles (WIMPs), which are hypothesized to make up the dark matter in our galactic halo. In this paper, the projected WIMP sensitivity of LZ is presented based on the latest background estimates and simulations of the detector. For a 1000 live day run using a 5.6-tonne fiducial mass, LZ is projected to exclude at 90% confidence level spin-independent WIMP-nucleon cross sections above 1.4 × 10-48cm2 for a 40 GeV/c2 mass WIMP.
Additionally, a 5σ discovery potential is projected, reaching cross sections below the exclusion limits of recent experiments. For spin-dependent WIMP-neutron(-proton) scattering, a sensitivity of 2.3 × 10−43 cm2 (7.1 × 10−42 cm2) for a 40 GeV/c2
mass WIMP is expected. With underground installation well underway, LZ is on track for commissioning at SURF in 2020
The present and future of QCD
This White Paper presents an overview of the current status and future perspective of QCD research, based on the community inputs and scientific conclusions from the 2022 Hot and Cold QCD Town Meeting. We present the progress made in the last decade toward a deep understanding of both the fundamental structure of the sub-atomic matter of nucleon and nucleus in cold QCD, and the hot QCD matter in heavy ion collisions. We identify key questions of QCD research and plausible paths to obtaining answers to those questions in the near future, hence defining priorities of our research over the coming decades
- …