233 research outputs found

    TESS Duotransit Candidates from the Southern Ecliptic Hemisphere

    Full text link
    Discovering transiting exoplanets with long orbital periods allows us to study warm and cool planetary systems with temperatures similar to the planets in our own Solar system. The TESS mission has photometrically surveyed the entire Southern Ecliptic Hemisphere in Cycle 1 (August 2018 - July 2019), Cycle 3 (July 2020 - June 2021) and Cycle 5 (September 2022 - September 2023). We use the observations from Cycle 1 and Cycle 3 to search for exoplanet systems that show a single transit event in each year - which we call duotransits. The periods of these planet candidates are typically in excess of 20 days, with the lower limit determined by the duration of individual TESS observations. We find 85 duotransit candidates, which span a range of host star brightnesses between 8 < TmagT_{mag} < 14, transit depths between 0.1 per cent and 1.8 per cent, and transit durations between 2 and 10 hours with the upper limit determined by our normalisation function. Of these candidates, 25 are already known, and 60 are new. We present these candidates along with the status of photometric and spectroscopic follow-up.Comment: 25 pages, 16 figures, submitted to Monthly Notices of the Royal Astronomical Societ

    Separated twins or just siblings? A multi-planet system around an M dwarf including a cool sub-Neptune

    Full text link
    We report the discovery of two TESS sub-Neptunes orbiting the early M dwarf TOI-904 (TIC 261257684). Both exoplanets, TOI-904 b and c, were initially observed in TESS sector 12 with twin sizes of 2.49R_\oplus and 2.31R_\oplus, respectively. Through observations in five additional sectors in the TESS primary mission and the first and second extended missions, the orbital periods of both planets were measured to be 10.887±\pm0.001 and 83.999±\pm0.001 days, respectively. Reconnaissance radial velocity measurements (taken with EULER/CORALIE) and high resolution speckle imaging with adaptive optics (obtained from SOAR/HRCAM and Gemini South/ZORRO) show no evidence of an eclipsing binary or a nearby companion, which together with the low false positive probabilities calculated with the statistical validation software TRICERATOPS establish the planetary nature of these candidates. The outer planet, TOI-904 c, is the longest-period M dwarf exoplanet found by TESS, with an estimated equilibrium temperature of 217K. As the three other validated planets with comparable host stars and orbital periods were observed by Kepler around much dimmer stars (Jmag_{mag} >> 12), TOI-904 c, orbiting a brighter star (Jmag_{mag} == 9.6), is the coldest M dwarf planet easily accessible for atmospheric follow-up. Future mass measurements and transmission spectroscopy of the similar sized planets in this system could determine whether they are also similar in density and composition, suggesting a common formation pathway, or whether they have distinct origins.Comment: 18 pages, 6 figures, Accepted by the Astrophysical Journal Letter

    Renal Denervation Update From the International Sympathetic Nervous System Summit:JACC State-of-the-Art Review

    Get PDF
    Three recent renal denervation studies in both drug-naïve and drug-treated hypertensive patients demonstrated a significant reduction of ambulatory blood pressure compared with respective sham control groups. Improved trial design, selection of relevant patient cohorts, and optimized interventional procedures have likely contributed to these positive findings. However, substantial variability in the blood pressure response to renal denervation can still be observed and remains a challenging and important problem. The International Sympathetic Nervous System Summit was convened to bring together experts in both experimental and clinical medicine to discuss the current evidence base, novel developments in our understanding of neural interplay, procedural aspects, monitoring of technical success, and others. Identification of relevant trends in the field and initiation of tailored and combined experimental and clinical research efforts will help to address remaining questions and provide much-needed evidence to guide clinical use of renal denervation for hypertension treatment and other potential indications

    Validation of TOI-1221 b: A warm sub-Neptune exhibiting TTVs around a Sun-like star

    Full text link
    We present a validation of the long-period (91.682780.00041+0.0003291.68278^{+0.00032}_{-0.00041} days) transiting sub-Neptune planet TOI-1221 b (TIC 349095149.01) around a Sun-like (mV_{\rm V}=10.5) star. This is one of the few known exoplanets with period >50 days, and belongs to the even smaller subset of which have bright enough hosts for detailed spectroscopic follow-up. We combine TESS light curves and ground-based time-series photometry from PEST (0.3~m) and LCOGT (1.0~m) to analyze the transit signals and rule out nearby stars as potential false positive sources. High-contrast imaging from SOAR and Gemini/Zorro rule out nearby stellar contaminants. Reconnaissance spectroscopy from CHIRON sets a planetary scale upper mass limit on the transiting object (1.1 and 3.5 MJup_{\rm Jup} at 1σ\sigma and 3σ\sigma, respectively) and shows no sign of a spectroscopic binary companion. We determine a planetary radius of Rp=2.910.12+0.13RR_{\rm p} = 2.91^{+0.13}_{-0.12} R_{\oplus}, placing it in the sub-Neptune regime. With a stellar insolation of S=6.060.77+0.85 SS = 6.06^{+0.85}_{-0.77}\ S_{\oplus}, we calculate a moderate equilibrium temperature of Teq=T_{\rm eq} = 440 K, assuming no albedo and perfect heat redistribution. We find a false positive probability from TRICERATOPS of FPP =0.0014±0.0003 = 0.0014 \pm 0.0003 as well as other qualitative and quantitative evidence to support the statistical validation of TOI-1221 b. We find significant evidence (>5σ5\sigma) of oscillatory transit timing variations, likely indicative of an additional non-transiting planet.Comment: 17 pages, 9 figures, 4 table

    Characterisation of the Physical Composition and Microbial Community Structure of Biofilms within a Model Full-Scale Drinking Water Distribution System

    Get PDF
    Within drinking water distribution systems (DWDS), microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS) is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm ismobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms or how this is influenced by community composition or environmental parameters, because of the complications in obtaining biofilm samples and the difficulties in analysing EPS. Additionally, although biofilms may contain various microbial groups, research commonly focuses solely upon bacteria. This research applies an EPS analysis method based upon fluorescent confocal laser scanning microscopy (CLSM) in combination with digital image analysis (DIA), to concurrently characterize cells and EPS (carbohydrates and proteins) within drinking water biofilms from a full-scale DWDS experimental pipe loop facility with representative hydraulic conditions. Application of the EPS analysismethod, alongside DNA fingerprinting of bacterial, archaeal and fungal communities, was demonstrated for biofilms sampled from different positions around the pipeline, after 28 days growth within the DWDS experimental facility. The volume of EPS was 4.9 times greater than that of the cells within biofilms, with carbohydrates present as the dominant component. Additionally, the greatest proportion of EPS was located above that of the cells. Fungi and archaea were established as important components of the biofilm community, although bacteria were more diverse.Moreover, biofilms from different positions were similar with respect to community structure and the quantity, composition and three-dimensional distribution of cells and EPS, indicating that active colonisation of the pipe wall is an important driver inmaterial accumulation within the DWDS

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
    corecore